王頗[江蘇師範大學副教授]

王頗[江蘇師範大學副教授]
王頗[江蘇師範大學副教授]
更多義項 ▼ 收起列表 ▲

王頗,男,1982年生,博士,副教授,副院長。2005年6月,本科畢業於安徽師範大學。2011年7月,中山大學博士畢業後,被引進到江蘇師範大學工作。2015年2月,從美國Florida International University留學歸國。2016年5月,入選江蘇省“青藍工程”優秀骨幹教師。2016年12月,入選江蘇師範大學高層次人才隊伍培養計畫。2018年6月,任職江蘇師範大學化學與材料科學學院副院長。2018年7月,榮獲江蘇省高校自然科學三等獎。2018年8月,榮獲徐州市“十大青年科技獎”。2018年9月,榮獲淮海科學技術獎一等獎(排名第二)。近五年,已主持2項國家自然科學基金項目,參與2項國家自然科學基金項目,主持或參與省、廳級項目6項。主要研究領域為生命分析化學,已在Anal. Chem.,Chem. Commun.,Biosens. Bioelectron.,Electrochem. Commun.,Langmuir等國際權威期刊發表學術論文四十餘篇,所發表論文先後被國內外學者引用1500餘次。

工作與學習經歷

2011年7月-今:江蘇師範大學,化學與材料科學學院,講師、副教授、副院長

2014年2月-2015年2月:Florida International University(美國),化學系,博士後

2008年9月-2011年6月:中山大學,化學與化學工程學院,理學博士

2005年9月-2008年6月:安徽師範大學,化學與材料科學學院,理學碩士

2001年9月-2005年6月:安徽師範大學,化學與材料科學學院,理學學士

研究領域與方向

1. 生命分析化學

2. 電化學感測器的構建

3. 功能性納米材料的製備、表征及套用

研究項目與計畫

1. 國家自然科學基金面上項目,紙晶片電化學界面的構建及其在腫瘤抑制基因甲基化研究中的套用(21675067),65萬,2017.01–2020.12,主持

2. 國家自然科學基金青年項目,p53腫瘤抑制基因突變狀態的電化學識別及套用(21205052),25萬,2013.01–2015.12,主持

3. 江蘇省“青藍工程”優秀骨幹教師培養計畫,2萬,2016.05–2019.04,主持

4. 江蘇師範大學高層次人才隊伍後備人選培養計畫,10萬,2017.01–2020.12,主持

5. 江蘇師範大學科研啟動經費,新型納米電化學生物感測器的構建及套用(11XLR12),20萬,2012.01–2013.12,主持

6. 江蘇省高校自然科學研究項目,腫瘤抑制基因突變狀態的電化學檢測及套用(12KJB150009),5 萬,2012.09–2014.12,主持

7. 國家自然科學基金面上項目,使用單分子螢光顯微鏡深入研究人體端粒酶的結構和功能(21375051),80萬,2014.01–2017.12,參與

8. 江蘇省自然科學基金項目,突變工況自適應的銀前驅體型潤滑油添加劑設計(BK20130229),20萬,2013.07–2016.06,參與

9. 國家自然科學基金面上項目,多肽定量構效關係的研究(20975117),35萬,2010.01–2012.12,參與

獲獎情況

1. 2018年8月,榮獲徐州市“十大青年科技獎”

2. 2018年9月,榮獲“淮海科學技術獎”,一等獎(排名第二)

3. 2018年8月,榮獲“江蘇省高校自然科學獎”,三等獎

4. 2016年5月,入選江蘇省“青藍工程”優秀骨幹教師

5. 2017年6月,江蘇師範大學“優秀指導教師”

6. 2015年12月,江蘇師範大學“青年教師教學評優賽”,二等獎

7. 2011年12月,中山大學“芙蘭論文獎”

8. 2010年12月,中山大學“優秀研究生”,一等獎

9. 2010年11月,中山大學“優秀論文獎”

10. 2010年6月,“廣東光華獎”,一等獎

11. 2009年12月,省級優秀碩士學位論文

12. 2008年4月,省級“品學兼優畢業研究生”

指導學生情況

1. 2017年6月,指導董亮同學獲得“優秀畢業論文”

2. 2016年5月,指導2013級化學班(13化11)獲得“省級先進班集體”

3. 2015年11月,指導楊靚同學參加“第四屆江蘇省師範生教學基本功大賽”,獲一等獎

4. 2015年11月,指導李薇同學參加“第四屆江蘇省師範生教學基本功大賽”,獲二等獎

5. 2015年9月,指導董亮同學獲得“國家獎學金”

6. 2015年7月,指導江曉莉同學參加“全國高等師範院校化學實驗邀請賽”,獲一等獎

7. 2015年7月,指導樊金曉同學參加“全國高等師範院校化學實驗邀請賽”,獲一等獎

8. 2015年7月,指導薛春慧同學參加“全國高等師範院校化學實驗邀請賽”,獲二等獎

9. 2015年5月,指導董亮、韓萍同學獲得國家級“大學生創新計畫訓練項目”

代表性學術論文

[1] X. Miao, Z. Cheng, H. Ma, Z. Li, N. Xue, P. Wang*, Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters, Anal. Chem., 2018, 90, 1098–1103.

[2] Q. Feng, X. Zhao, Y. Guo, M. Liu*, P. Wang*, Stochastic DNA walker for electrochemical biosensing sensitized with gold nanocages@graphene nanoribbons, Biosens. Bioelectron., 2018, 108, 97–102.

[3] Q. Feng*, M. Wang, X. Zhao, P. Wang*, Construction of a cytosine-adjusted electrochemiluminescence resonance energy transfer system for microRNA detection, Langmuir, 2018, 34, 10153–10162.

[4] P. Wang*, Z. Cheng, Q. Chen, L. Qu, X. Miao, Q. Feng, Construction of a paper-based electrochemical biosensing platform for rapid and accurate detection of adenosine triphosphate (ATP), Sensor Actuat. B-Chem., 2018, 256, 931–937.

[5] H. Wang, L. Zhu, J. Duan, M. Wang, H. Yin*, P. Wang*, S. Ai, Photoelectrochemical biosensor for HEN1 RNA methyltransferase detection using peroxidase mimics PtCu NFs and poly(U) polymerase-mediated RNA extension, Biosens. Bioelectron., 2018, 103, 32–38.

[6] Q. Feng, M. Wang, Q. Chen, P. Wang*, Direct electrochemical detection of guanosine-5′-monophosphate at choline monolayer supported and gold nanocages functionalized carbon nanotubes sensing interface, Sensor Actuat. B-Chem., 2018, 274, 343–348.

[7] P. Wang*, M. Wang, F. Zhou, G. Yang, L. Qu, X. Miao, Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection, Electrochem. Commun., 2017, 81, 74–78.

[8] F. Zhou, Y. Yao, J. Luo, X. Zhang, D. Yin, F. Gao*, P. Wang*, Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles, Anal. Chim. Acta, 2017, 969, 8–17.

[9] F. Gao, F. Zhou, S. Chen, Y. Yao, J. Wu, D. Yin, D. Geng*, P. Wang*, Proximity hybridization triggered rolling-circle amplification for sensitive electrochemical homogeneous immunoassay, Analyst, 2017, 142, 4308–4316.

[10] C. Sui, Y. Zhou, M. Wang, H. Yin*, P. Wang*, S. Ai, Aptamer-based photoelectrochemical biosensor for antibiotic detection using ferrocene modified DNA as both aptamer and electron donor, Sensor Actuat. B-Chem., 2018, 266, 514–521.

[11] F. Gao, F. Zhou, Y. Yao, Y. Zhang, L. Du, D. Geng*, P. Wang*, Ordered assembly of platinum nanoparticles on carbon nanocubes and their application in the non-enzymatic sensing of glucose, J. Electroanal. Chem., 2017, 803, 165–172.

[12] X. Miao*, Z. Cheng, Z. Li, P. Wang*, A novel sensing platform for sensitive cholesterol detection by using positively charged gold nanoparticles, Biochem. Eng. J., 2017, 117, 21–27.

[13] P. Wang*, C. Han, F. Zhou, J. Lu*, X. Han, Z. Wang, Electrochemical determination of tert-butylhydroquinone and butylated hydroxyanisole at choline functionalized film supported graphene interface, Sensor Actuat. B-Chem., 2016, 224, 885–891.

[14] P. Wang*, P. Han, L. Dong, X. Miao, Direct potential resolution and simultaneous detection of cytosine and 5-methylcytosine based on the construction of polypyrrole functionalized graphene nanowall interface, Electrochem. Commun., 2015, 61, 36–39.

[15] Y. Zhu, J. Qiu, Y. Huang, P. Wang*, C. Lai*, Enhanced cycling performance of the LiTiO anode in an ethers electrolyte induced by a solid-electrolyte interphase film, RSC Adv., 2015, 5, 56908–56912.

[16] P. Wang*, F. Zhou, Z. Wang, C. Lai*, X. Han, Substrate-induced assembly of PtAu alloy nanostructures at choline functionalized monolayer interface for nitrite sensing, J. Electroanal. Chem., 2015, 750, 36–42.

[17] P. Wang*, X. Li, Z. Dai*, X. Zou, X. Han, An efficient electrochemical method for direct screening of the mutation status of DNA base in oligonucleotides, Sensor Actuat. B-Chem., 2014, 201, 222–227.

[18] P. Wang*, H. Chen, J. Tian, Z. Dai, X. Zou*, Electrochemical evaluation of DNA methylation level based on the stoichiometric relationship between purine and pyrimidine bases, Biosens. Bioelectron., 2013, 45, 34–39.

[19] P. Wang, H. Wu, Z. Dai*, X. Zou*, Picomolar level profiling of the methylation status of the p53 tumor suppressor gene by a label-free electrochemical biosensor, Chem. Commun., 2012, 48, 10754–10756.

[20] P. Wang, H. Wu, Z. Dai*, X. Zou*, Simultaneous detection of guanine, adenine, thymine and cytosine at choline monolayer supported multiwalled carbon nanotubes film, Biosens. Bioelectron., 2011, 26, 3339–3345.

[21] P. Wang, Z. Mai, Z. Dai*, X. Zou*, Investigation of DNA methylation by direct electrocatalytic oxidation, Chem. Commun., 2010, 46, 7781–7783.

[22] P. Wang, Z. Mai, Z. Dai, Y. Li*, X. Zou*, Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite, Biosens. Bioelectron., 2009, 24, 3242–3247.

[23] P. Wang, F. Li, X. Huang, Y. Li*, L. Wang, In situ electrodeposition of Pt nanoclusters on glassy carbon surface modified by monolayer choline film and their electrochemical applications, Electrochem. Commun., 2008, 10, 195–199.

[24] P. Wang, Y. Li*, X. Huang, L. Wang*, Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid, Talanta, 2007, 73, 431–437.

[25] Y. Li*, P. Wang, F. Li, X. Huang, L. Wang, X. Lin, Covalent immobilization of single-walled carbon nanotubes and single-stranded deoxyribonucleic acid nanocomposites on glassy carbon electrode: Preparation, characterization, and applications, Talanta, 2008, 77, 833–838.

[26] Y. Li*, P. Wang, L. Wang, X. Lin*, Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications, Biosens. Bioelectron., 2007, 22, 3120–3125.

[27] L. Qu*, S. He, J. Wang, Z. Lin, D. Barry, G. Yang, P. Wang, P. Zhang, H. Li*, Fluorescence-surface enhanced Raman scattering dual-mode nanosensors to monitor hydroxyl radicals in living cells, Sensor Actuat. B-Chem., 2017, 251, 934–941.

[28] Z. Li, X. Miao*, Z. Cheng, P. Wang, Hybridization chain reaction coupled with the fluorescence quenching of gold nanoparticles for sensitive cancer protein detection, Sensor Actuat. B-Chem., 2017, 243, 731–737.

[29] Y. Li, J. Tian*, T. Yuan, P. Wang, J. Lu*, A sensitive photoelectrochemical aptasensor for oxytetracycline based on a signal “switch off-on” strategy, Sensor Actuat. B-Chem., 2017, 240, 785–792.

[30] X. Han*, X. Han, L. Sun, P. Wang, M. Jin, X. Wang*, Facile preparation of hybrid anatase/rutile TiO nanorods with exposed (010) facets for lithium ion batteries, Mater. Chem. Phys., 2016, 171, 11–15.

[31] J. Tian, T. Huang, P. Wang, J. Lu*, GOD/HRP bienzyme synergistic catalysis in a 2-D graphene framework for glucose biosensing, J. Electrochem. Soc., 2015, 162, B319–B325.

[32] X. Han*,X. Han,L. Sun,Q. Liu,W. Xu,L. Li, P. Wang,C. Wang, One-step synthesis of highly aligned SnOnanorods on a self-produced NaSn(OH)substrate for high-performance lithium-ion batteries, CrystEngComm, 2015, 17, 1754–1757.

[33] X. Fan, Y. Li, Y. Liu, P. Wang, H. Li*, Theoretical and experimental study of the conformational structure of HIV RNA, Biophys. J., 2014, 106, 282a.

[34] H. Wu, L. Lin, P. Wang, S. Jiang, Z. Dai*, X. Zou*, Solubilization of pristine fullerene by the unfolding mechanism of bovine serum albumin for cytotoxic application, Chem. Commun., 2011, 47, 10659–10661.

[35] H. Wu, X. Zhao, P. Wang, Z. Dai*, X. Zou*, Electrochemical site marker competitive method for probing the binding site and binding mode between bovine serum albumin and alizarin red S, Electrochim. Acta, 2011, 56, 4181–4187.

[36] H. Wu, P. Wang, X. Hu, Z. Dai*, X. Zou*, Site-selective probe for investigating the asynchronous unfolding of domains in bovine serum albumin, Talanta, 2011, 84, 881–886.

[37] H. Xian, P. Wang, Y. Zhou, Q. Lu, S. Wu, Y. Li*, L. Wang, Electrochemical determination of nitrite via covalent immobilization of a single-walled carbon nanotubes and single stranded deoxyribonucleic acid nanocomposite on a glassy carbon electrode, Microchim. Acta, 2010, 171, 63–69.

[38] X. Huang, Y. Li*, P. Wang, L. Wang, Sensitive determination of dopamine and uric acid by the use of a glassy carbon electrode modified with poly(3-methylthiophene)/gold nanoparticle composites, Anal. Sci., 2008, 24, 1563–1568.

[39] P. Yang, Y. Li*, P. Wang, L. Wang, A sensitive inhibition chemiluminescence method for the determination of trace tannic acid using the reaction of luminol-hydrogen peroxide catalysed by tetrasulphonated manganese phthalocyanine, Luminescence, 2007, 22, 46–52.

[40] Y. Li*, P. Yang, P. Wang, L. Wang*, Development of a novel luminol chemiluminescent method catalyzed by gold nanoparticles for determination of estrogens, Anal. Bioanal. Chem., 2007, 387, 585–592.

[41] Y. Li*, P. Yang, P. Wang, X. Huang, L. Wang*, CdS nanocrystal induced chemiluminescence: reaction mechanism and applications, Nanotechnology, 2007, 18, 225602.

學術評價與影響

近年來,已發表論文先後被Chem. Rev.,J. Am. Chem. Soc.,Angew. Chem. Int. Ed.,PNAS,Chem. Commun.,Anal. Chem ,Adv. Funct. Mater.,Electrochem. Commun.,J. Phys. Chem. C,Langmuir等國際權威期刊引用1500餘次。美國科學家、麻省理工學院T. Alan Hatton評論其研發了一種先進的(advanced)碳電極(Nano Today, 2014, 9, 405–432)。德國學者Klaus Mathwig評價其研究工作是一項革新的(innovative)成果(Trend. Anal. Chem., 2015, 66, 80–89)。澳大利亞M.J.A. Shiddiky評論其解決了一個挑戰性的難題(significant challenge)(Biosens. Bioelectron., 2017, 94, 63–73)。Springer國際出版集團在《Handbook of Nanoelectrochemistry》論著中評論其首次(first)發展了一種高效的(efficient)DNA甲基化檢測技術。美國喬治亞理工學院Mira Josowicz評價其電極材料具有出色(excellent)的電催化性質(Chem. Rev., 2008, 108, 746–769)。

相關詞條

熱門詞條

聯絡我們