牛頓-拉夫遜方法

牛頓-拉夫遜方法

牛頓-拉夫遜法在數學上是求解非線性代數方程組的有效方法。其要點是把非線性方程求解過程變成反覆地對相應的線性方程進行求解的過程。

牛頓疊代法(Newton's method)又稱為牛頓-拉夫遜方法(Newton-Raphson method),它是牛頓在17世紀提出的一種在實數域和複數域上近似求解方程的方法。多數方程不存在求根公式,因此求精確根非常困難,甚至不可能,從而尋找方程的近似根就顯得特別重要。方法使用函式f(x)的泰勒級數的前面幾項來尋找方程f(x) = 0的根。牛頓疊代法是求方程根的重要方法之一,其最大優點是在方程f(x) = 0的單根附近具有平方收斂,而且該法還可以用來求方程的重根、復根。

設r是f(x) = 0的根,選取x0作為r初始近似值,過點(x0,f(x0))做曲線y = f(x)的切線L,L的方程為y = f(x0)+f'(x0)(x-x0),求出L與x軸交點的橫坐標 x1 = x0-f(x0)/f'(x0),稱x1為r的一次近似值。過點(x1,f(x1))做曲線y = f(x)的切線,並求該切線與x軸的橫坐標 x2 = x1-f(x1)/f'(x1),稱x2為r的二次近似值。重複以上過程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),稱為r的n+1次近似值,上式稱為牛頓疊代公式。

解非線性方程f(x)=0的牛頓法是把非線性方程線性化的一種近似方法。把f(x)在x0點附近展開成泰勒級數 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其線性部分,作為非線性方程f(x) = 0的近似方程,即泰勒展開的前兩項,則有f(x0)+f'(x0)(x-x0)=f(x)=0 設f'(x0)≠0則其解為x1=x0-f(x0)/f'(x0) 這樣,得到牛頓法的一個疊代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

相關詞條

熱門詞條

聯絡我們