定義
標準常態分配---standard normal distribution
標準常態分配又稱為u分布,是以0為均數、以1為標準差的常態分配,記為N(0,1)。
標準常態分配曲線下面積分布規律是:在-1.96~+1.96範圍內曲線下的面積等於0.9500,在-2.58~+2.58範圍內曲線下面積為0.9900。統計學家還制定了一張統計用表(自由度為∞時),藉助該表就可以估計出某些特殊u1和u2值範圍內的曲線下面積。
附表 標準常態分配表
(點擊可放大)
常態分配的機率密度函式曲線呈鐘形,因此人們又經常稱之為鐘形曲線。我們通常所說的標準常態分配是位置參數均數為0, 尺度參數:標準差為1的常態分配(見右圖中綠色曲線)。
常態分配中一些值得注意的量:
密度函式關於平均值對稱
平均值與它的眾數(statistical mode)以及中位數(median)同一數值。
函式曲線下68.268949%的面積在平均數左右的一個標準差範圍內。
95.449974%的面積在平均數左右兩個標準差的範圍內。
99.730020%的面積在平均數左右三個標準差的範圍內。
99.993666%的面積在平均數左右四個標準差的範圍內。
函式曲線的反曲點(inflection point)為離平均數一個標準差距離的位置。
標準偏差
深藍色區域是距平均值小於一個標準差之內的數值範圍。在常態分配中,此範圍所占比率為全部數值之68%,根據常態分配,兩個標準差之內的比率合起來為95%;三個標準差之內的比率合起來為99%。
在實際套用上,常考慮一組數據具有近似於常態分配的機率分布。若其假設正確,則約68.3%數值分布在距離平均值有1個標準差之內的範圍,約95.4%數值分布在距離平均值有2個標準差之內的範圍,以及約99.7%數值分布在距離平均值有3個標準差之內的範圍。稱為“68-95-99.7法則”或“經驗法則”。