基本介紹
內容簡介
《壓電材料高等力學(英文版)》的讀者對象是物理、力學和材料類相關專業的研究人員和研究生。
作者簡介
作者:(澳大利亞)秦慶華
秦慶華,澳大利亞國立大學教授。2001—2006年被天津大學聘為教育部“長江學者獎勵計畫”特聘教授。主要研究方向為計算力學、智慧型材料與結構、生物材料力學、微納米力學、複合材料損傷與斷裂力學。
圖書目錄
Chapter 1 Introduction to Piezoelectricity
1.1 Background
1.2 Linear theory of piezoelectricity
1.2.1 Basic equations in rectangular coordinate system
1.2.2 Boundary conditions
1.3 Functionally graded piezoelectric materials
1.3.1 Types of gradation
1.3.2 Basic equations for two-dimensional FGPMs
1.4 Fibrous piezoelectric composites
References
Chapter 2 Solution Methods
2.1 Potential function method
2.2 Solution with Lekhnitskii formalism
2.3 Techniques of Fourier transformation
2.4 Trefftz finite element method
2.4.1 Basic equations
2.4.2 Assumed fields
2.4.3 Element stiffness equation
2.5 Integral equations
2.5.1 Fredhohn integral equations
2.5.2 Volterra integral equations
2.5.3 Abel's integral equation
2.6 Shear-lag model
2.7 Hamiltonian method and symplectic mechanics
2.8 State space formulation
References
Chapter 3 Fibrous Piezoelectric Composites
3.1 Introduction
3.2 Basic formulations for fiber push-out and pull-out tests
3.3 Piezoelectric fiber pull-out
3.3.1 Relationships between matrix stresses and interfacial shear stress
3.3.2 Solution for bonded region
3.3.4 Numerical results
3.4 Piezoelectric fiber push-out
3.4.1 Stress transfer in the bonded region
3.4.2 Frictional sliding
3.4.3 PFC push-out driven by electrical and mechanical loading
3.4.4 Numerical assessment
3.5 Interfacial debonding criterion
3.6 Micromechanics of fibrous piezoelectric composites
3.6.1 Overall elastoelectric properties of FPCs
3.6.2 Extension to include magnetic and thermal effects
3.7 Solution of composite with elliptic fiber
3.7.1 Conformal mapping
3.7.2 Solutions for thermal loading applied outside an elliptic fiber
3.7.3 Solutions for holes and rigid fibers
References
Chapter 4 Trefftz Method for Piezoelectricity
4.1 Introduction
4.2 Trefftz FEM for generalized plane problems
4.2.1 Basic field equations and boundary conditions
4.2.2 Assumed fields
4.2.3 Modified variational principle
4.2.4 Generation of the element stiffness equation
4.2.5 Numerical results
4.3 Trefftz FEM for anti-plane problems
4.3.1 Basic equations for deriving Trefftz FEM
4.3.2 Trefftz functions
4.3.3 Assumed fields
4.3.4 Special element containing a singular comer
4.3.5 Generation of element matrix
4.3.6 Numerical examples
4.4 Trefftz boundary element method for anti-plane problems
4.4.1 Indirect formulation
4.4.2 The point-collocation formulations of Trefftz boundary element method
4.4.3 Direct formulation
4.4.4 Numerical examples
4.5 Trefftz boundary-collocation method for plane piezoelectricity
4.5.1 General Tretttz solution sets
4.5.2 Special Trefffz solution set for a problem with elliptic holes
4.5.3 Special Trefftz solution set for impermeable crack problems
4.5.4 Special Trefftz solution set for permeable crack problems
4.5.5 Boundary collocation formulation
References
Chapter 5 Symplectie Solutions for Piezoelectric Materials
5.1 Introduction
5.2 A symplectic solution for piezoelectric wedges
5.2. i Hamiltonian system by differential equation approach
5.2.2 Hamiltonian system by variational principle approach
5,2.3 Basic eigenvalues and singularity of stress and electric fields
5.2.4 Piezoelectric bimaterial wedge
5.2.5 Multi-piezoelectric material wedge
5.3 Extension to include magnetic effect
5.3.1 Basic equations and their Hamiltonian system
5.3.2 Eigenvalues and eiganfunctions
5.3.3 Particular solutions
5.4 Symplectic solution for a magnetoelectroelastic strip
5.4.1 Basic equations
5.4.2 Hamiltonian principle
5.4.3 The zero-eigenvalue solutions
5.4.4 Nonzero-eigenvalue solutions
5.5 Three-dimensional symplectic formulation for piezoelectricity
5.5.1 Basic formulations
5.5.2 Hamiltonian dual equations
5.5.3 The zero-eigenvalue solutions
5.5.4 Sub-symplectic system
5.5.5 Nonzero-eigenvalue solutions
5.6 Symplectic solution for FGPMs
5.6.1 Basic formulations
5.6.2 Eigenvalue properties of the Hamiltonien matrix H
5.6.3 Eigensolutions corresponding to μ=0 and-α
5.6.4 Extension to the case of magnetoelectroelastic materials
References
Chapter 6 Saint-Venant Decay Problems in Piezoelectricity
6.1 Introduction
6.2 Saint-Venant end effects of piezoelectric strips
6.2.1 Hamiltonian system for a piezoelectric strip
6.2.2 Decay rate analysis
3.3.3 Solution for debonded region
6.2.3 Numerical inustration
6.3 Saint-Venant decay in anti-plane dissimilar laminates
6.3.1 Basic equations for anti-plane piezoelectric problem
6.3.2 Mixed-variable state space formulation
6.3.3 Decay rate of FGPM strip
6.3.4 Two-layered FGPM laminates and dissimilar piezoelectric laminates
6.4 Saint-Venant decay in multilayered piezoelectric laminates
6.4.1 State space formulation
6.4.2 Eigensolution and decay rate equation
6.5 Decay rate ofpiezoelectric-piezomagnetic sandwich structures
6.5.1 Basic equations and notations in multilayered structures
6.5.2 Space state differential equations for analyzing decay rate'
6.5.3 Solutions to the space state differential equations
References
Chapter7 Penny-ShapedCraeks
7.1 Introduction
7.2 An infinite piezoelectric material with a penny-shaped crack
7.3 A penny-shaped crack in a piezoelectric strip
7.4 A fiber with a penny-shaped crack embedded in a matrix
7.5 Fundamental solution for penny-shaped crack problem
7.5.1 Potential approach
7.5.2 Solution for crack problem
7.5.3 Fundamental solution for penny-shaped crack problem
7.6 A penny-shaped crack in a piezoelectric cylinder
7.6.1 Problem statement and basic equation
7.6.2 Derivation of integral equations and their solution
7.6.3 Numerical results and discussion
7.7 A fiber with a penny-shaped crack and an elastic coating
7.7.1 Formulation of the problem
7.7.2 Fredholm integral equation of the problem
7.7.3 Numerical results and discussion
References
Chapter 8 Solution Methods for Functionally Graded
Piezoelectric Materials
8.1 Introduction
8.2 Singularity analysis of angularly graded piezoelectric wedge
8.2.1 Basic formulations and the state space equation
8.2.2 Two AGPM wedges
8.2.3 AGPM-EM-AGPM wedge system
8.2.4 Numerical results and discussion
8.3 Solution to FGPM beams
8.3.1 Basic formulation
8.3.2 Solution procedure
8.4 Parallel cracks in an FGPM strip
8.4.1 Basic formulation
8.4.2 Singular integral equations and field intensity factors
8.5 Mode Ⅲ cracks in two bonded FGPMs
8.5.1 Basic formulation of the problem
8.5.2 Impermeable crack problem
8.5.3 Permeable crack problem
References
Index