圖書信息
; 第1版 (2006年4月1日)
:
開本: 16開
ISBN: 711118842X
條形碼: 9787111188421
尺寸: 23.8 x 18.6 x 3 cm
重量: 880 g
作者簡介
作者:(美)羅特曼
Joseph J.Rotman美國伊利諾伊大學厄巴納-尚佩恩分校數學系教授。他著有多部數學方面的書,其中包括《Adanced Modern Algebra》(高等近世代數,本書中文版由機械工業出版社引進出版),(Galois Theory)等。
內容簡介
本書系統地介紹了抽象代數的基礎內容,包括群、環、域、模等,每一部分獨立成章,本科生、研究生等不同層次的讀者可以挑選閱讀。書中範例豐富,風趣易懂;另外,每一小節後都配有一定數量、難易不等的習題,書後還附有解答與提示,便於教學和自學。
與第2版相比,第3版的更新如下:
闡述更清晰,表達更順暢。
在前五章中,最重要的節,小節,定義,定理,例子旁邊加有箭頭指示。
包含了任意域上的線性代數的更多知識。
增加了一節介紹分類平面上的楣(frieze)群。
增加了100多道習題
本書可供高等院校數學系師生及有關工程技術人員使用。
目錄
Preface to the Third Edition
Suggested Syllabi
To the Reader
Chapter I Number Theory
Section 1.1 Induction
Section 1.2 Binomial Theorem and Complex Numbers
Section 1.3 Greatest Common Divisors
Section 1.4 The Fundamental Theorem of Arithmetic
Section 1.5 Congruences
Section 1.6 Dates and Days
Chapter 2 Groups I
Section 2.1 Some Set Theory
Functions
Equivalence Relations
Section 2.2 Permutations
Section 2.3 Groups
Symmetry
Section 2.4 Subgroups and Lagrange's Theorem
Section 2.5 Homomorphisms
Section 2.6 Quotient Groups
Section 2.7 Group Actions
Section 2.8 Counting with Groups
Chapter 3 Commutative Rings I
Section 3.1 First Properties
Section 3.2 Fields
Section 3.3 Polynomials
Section 3.4 Homomorphisms
Section 3.5 From Numbers to Polynomials .
Euclidean Rings
Section 3.6 Unique Factorization
Section 3.7 Irreducibility
Section 3.8 Quotient Rings and Finite Fields
Section 3.9 A Mathematical Odyssey
Latin Squares
Magic Squares
Design of Experiments
Projective Planes
Chapter 4 Linear Algebra
Section 4.1 Vector Spaces
Gaussian Elimination
Section 4.2 Euclidean Constructions
Section 4.3 Linear Transformations
Section 4.4 Eigenvalues
Section 4.5 Codes
Block Codes
Linear Codes
Decoding
Chapter 5 Fields
Section 5.1 Classical Formulas
Viete's Cubic Formula
Section 5.2 Insolvability of the General Quintic
Formulas and Solvability by Radicals
Quadratics
Cubics
Quartics
Translation into Group Theory
Section 5,3 Epilog
Chapter 6 Groups H
Section 6.1 Finite Abelian Groups
Section 6.2 The Sylow Theorems
Section 6.3 Ornamental Symmetry
Chapter 7 Commutative Rings II
Section 7.1 Prime Ideals and Maximal Ideals
Section 7.2 Unique Factorization
Section 7.3 Noetherian Rings
Section 7.4 Varieties
Section 7.5 Generalized Divison Algorithm .
Monomial Orders
Division Algorithm
Section 7.6 Grobner Bases
Appendix A Inequalities
Appendix B Pseudocodes
Hints for Selected Exercises
Bibliography
Index