希格斯玻色子
希格斯玻色子(英語:Higgs boson)是標準模型里的一種基本粒子,是一種玻色子,自旋為零,宇稱為正值,不帶電荷、色荷,極不穩定,生成後會立刻衰變。希格斯玻色子是希格斯場的量子激發。根據希格斯機制,基本粒子因與希格斯場耦合而獲得質量。假若希格斯玻色子被證實存在,則希格斯場應該也存在,而希格斯機制也可被確認為基本無誤。
物理學者用了四十多年時間尋找希格斯玻色子的蹤跡。大型強子對撞機(LHC)是全世界至今為止最昂貴、最複雜的實驗設施之一,其建成的一個主要任務就是尋找與觀察希格斯玻色子與其它種粒子。2012年7月4日,歐洲核子研究組織(CERN)宣布,LHC的緊湊渺子線圈(CMS)探測到質量為125.3±0.6GeV的新玻色子(超過背景期望值4.9個標準差),超環面儀器(ATLAS)測量到質量為126.5GeV的新玻色子(5個標準差),這兩種粒子極像希格斯玻色子。2013年3月14日,歐洲核子研究組織發表新聞稿正式宣布,先前探測到的新粒子暫時被確認是希格斯玻色子,具有零自旋與偶宇稱,這是希格斯玻色子應該具有的兩種基本性質,但有一部分實驗結果不盡符合理論預測,更多數據仍在等待處理與分析。
希格斯玻色子是因物理學者彼得·希格斯而命名。他是於1964年提出希格斯機制的六位物理學者中的一位。2013年10月8日,因為“次原子粒子質量的生成機制理論,促進了人類對這方面的理解,並且最近由歐洲核子研究組織屬下大型強子對撞機的超環面儀器及緊湊μ子線圈探測器發現的基本粒子證實”,弗朗索瓦·恩格勒、彼得·希格斯榮獲2013年諾貝爾物理學獎。
理論發展史
物理學者認為物質是由基本粒子組成,這些基本粒子彼此之間相互影響的基本力有四種。根據規範場論,為了滿足定域規範對稱性,必須引入傳遞基本力的規範玻色子。特別而言,傳遞電磁力的規範玻色子就是光子。1954年,楊振寧與羅伯特·米爾斯試圖將這關於電磁力的點子延伸至其他種基本力,他們提出了楊-米爾斯理論,但是規範場論預測規範玻色子的質量必須為零,而零質量玻色子傳遞的是類似電磁力的長程力,不適用於像弱核力或強核力一類的短程力。
怎樣才能夠使得傳遞短程力的規範玻色子獲得質量?物理學者在凝聚態物理學的超導理論里找到重要暗示。1950年,俄國物理學者維塔利·金茲堡與列夫·郎道提出金茲堡-朗道理論,他們建議,在超導體裡,瀰漫著一種特別的場,能夠使得光子獲得有效質量,但他們並沒有明確地描述這特別場。1957年,約翰·巴丁、利昂·庫珀、約翰·施里弗共同創建了BCS理論,他們認為,由電子組成的庫珀對,形成了這特別場。規範對稱性被這特別場隱藏起來,因此造成自發對稱性破缺──雖然對稱性仍舊存在於描述這物理系統的方程,但是方程的某種解答並不具有這對稱性。
南部陽一郎於1960年將自發對稱性破缺的概念引入粒子物理學。他建議,假定夸克與反夸克的質量為零,則生成它們的能量成本很低,如同電子們在超導體裡凝聚為庫珀對,它們會在真空里凝聚為夸克對,使得強相對作用的手征對稱性被打破,夸克會因此獲得質量。他又指出,在這機制里,還會出現一種新的零質量玻色子,即π介子,由於上夸克、下夸克的質量不等於零,π介子的實際質量不等於零,只是比其他種介子的質量都輕很多。1962年,傑福瑞·戈德斯通提出戈德斯通定理,對於這類零質量玻色子的性質給予描述。根據這定理,當連續對稱性被自發打破後必會生成一種零質量玻色子,稱為戈德斯通玻色子。帶質量粒子比較難製成,粒子加速器必須使用很高的能量來碰撞製成帶質量粒子。零質量粒子案例跟重質量粒子案例不同,零質量粒子很容易製成,或者可從缺失能量或動量推測其存在。然而,事實並非如此,物理學者無法做實驗找到其存在的任何蛛絲馬跡,這事實意味著整個理論可能有瑕疵。1963年,菲利普·安德森發表論文指出,對於非相對論性的超導體案例,假若是規範對稱性被打破,則不一定會出現戈德斯通玻色子,他進一步猜測,這機制應該可以加以延伸來處理相對論性案例,但他並沒有明確地給出一個相對論性案例。這論述遭到未來諾貝爾化學獎得主沃特·吉爾伯特強烈反對。
1964年,弗朗索瓦·恩格勒和羅伯特·布繞特領先於8月,緊接著,彼得·希格斯於10月,隨後,傑拉德·古拉尼、卡爾·哈庚和湯姆·基博爾於11月,這三個研究小組分別獨立地發表論文,宣布研究出相對論性模型。古拉尼於1965年、希格斯於1966年、基博爾於1967年,又分別更進一步發表論文探討這模型的性質。這三篇1964年論文共同表明,假若將局部規範不變性理論與自發對稱性破缺的概念以某種特別方式連結在一起,則規範玻色子必然會獲得質量。1967年,史蒂文·溫伯格與阿卜杜勒·薩拉姆各自獨立地套用希格斯機制來打破電弱對稱性,並且表述希格斯機制怎樣能夠併入稍後成為標準模型一部分的謝爾登·格拉肖的電弱理論。溫伯格指出,這過程應該也會使得費米子獲得質量。
關於規範對稱性的自發性破缺的這些劃時代論文,最初並沒有得到學術界的重視,因為大多數物理學者認為,非阿貝爾規範理論是個死胡同,無法被重整化。1971年,荷蘭物理學者馬丁紐斯·韋爾特曼與傑拉德·特·胡夫特發表了兩篇論文,證明楊-米爾斯理論(一種非阿貝爾規範理論)可以被重整化,不論是對於零質量規範玻色子,還是對於帶質量規範玻色子。自此以後,物理學者開始接受這些理論,正式將這些理論納入主流。
從這些理論孕育出的電弱理論與改善後的標準模型,正確地預測了弱中性流、W玻色子、Z玻色子、頂夸克、粲夸克,並且準確地計算出其中一些粒子的性質與質量。很多在這領域給出重要貢獻的物理學者後來都獲得了諾貝爾物理學獎與其它享有聲望的獎賞。發表於《現代物理評論》的一篇1974年文章表示,至今為止,這些理論推導出的答案符合實驗結果,但是,這些理論到底是否正確仍舊無法確定。權威著作《希格斯狩獵者指南》的作者指明,標準模型擁有驚人的成功。現今,粒子物理學的核心問題就是了解希格斯區的相關理論。
物理評論快報1964年裡程碑論文
六位物理學者分別發表的三篇論文,在《物理評論快報》50周年慶祝文獻里被公認為里程碑論文。2010年,他們又榮獲理論粒子物理學櫻井獎。同年,在他們之間,又發生了一點爭執,萬一因此獲得諾貝爾物理學獎,由於每一年只能授予給三位傑出人士,而現在有六位人士做出了關鍵貢獻,到底應該頒發物理學最榮譽的獎給哪三位人士?(結果,弗朗索瓦·恩格勒和彼得·希格斯獲得了2013年諾貝爾物理學獎。)
1964年8月,恩格勒團隊發表了三頁論文,他們假定存在有復值標量場(即希格斯場),其數值在量子真空里不等於零,然後使用費曼圖方法演示出規範玻色子怎樣獲得質量。恩格勒團隊並沒有提到任何關於希子的信息。稍後,希格斯獨立發表論文概述怎樣能夠套用定域規範對稱性來迴避戈德斯通定理,他並沒有給出模型明確顯示戈德斯通玻色子被抵銷。不久之後,希格斯發表第二篇論文,他更仔細的表述這迴避方法,給出一個可行模型,並且用這模型演示出規範矢量場怎樣吃掉戈德斯通玻色子,因此獲得質量。他將這篇論文被呈送給《物理快報》,但是令人驚訝地沒有被接受。他無法理解,為什麼同樣的學術刊物,會接受一篇關於“帶質量規範玻色子可能存在”的論文,又會否絕一篇描述“帶質量規範玻色子實際模型”的文章。希格斯不因此而氣餒,他又添加了一些內容,從他給出的模型,他預測另外存在一種帶質量玻色子,後來知名為“希格斯玻色子”希格斯的1966年論文推導出希子的衰變機制;只有帶質量玻色子可以衰變,假若找到衰變的跡象,就可以證實希子存在。
古拉尼團隊論文提到了恩格勒團隊與希格斯先前分別獨立發表的論文。古拉尼團隊論文是唯一對於整個希格斯機制給出完整分析的論文。這論文也推導出希子的存在,但是希格斯的希子具有質量,而古拉尼團隊的希子不具有質量,這結果令人疑問兩種希子是否相同。在2009年與2011年發表的兩篇論文中,古拉尼解釋,在古拉尼團隊給出的模型里,取至最低階近似,玻色子的質量為零,但是這質量的數值沒有被任何理論限制;取至較高階,玻色子可以獲得質量。
希格斯機制不但解釋了規範玻色子怎樣獲得質量,還預測這些玻色子與標準模型的費米子之間的耦合。經過在大型正負電子對撞機(LEP)和斯坦福線性加速器(SLAC)做精密測量實驗,很多預測都已經核對證實,因此確認大自然實際存在這一機制。但物理學者仍舊不清楚希格斯機制到底是怎樣發生,他們希望能從尋找希子所得到的結果獲得一些這方面的證據。
理論
主條目:希格斯機制
量子力學的真空與一般認知的真空不同。在量子力學裡,真空並不是全無一物的空間,虛粒子會持續地隨機生成或湮滅於空間的任意位置,這會造成奧妙的量子效應。將這些量子效應納入考量之後,空間的最低能量態,是在所有能量態之中,能量最低的能量態,又稱為基態或“真空態”。最低能量態的空間才是量子力學的真空。描述物理系統的方程所具有的對稱性,這最低能量態可能不具有,這現象稱為自發對稱性破缺。
在標準模型里,為了滿足定域規範不變性,規範玻色子的質量必須設定為零;但這不符合實驗觀察結果──W玻色子與Z玻色子都已經通過做實驗檢驗確實擁有質量。因此,這些玻色子必須倚賴其它種機制或作用來獲得質量。
如右圖所示,假定有一種遍布於宇宙的復值希格斯場 ,而希格斯勢與希格斯場 的關係形狀好似一頂墨西哥帽,最低能量態不在帽頂,而是在帽子谷底,在這裡有無窮多個簡併的最低能量態,其對應的希格斯場不等於零。每一個最低能量態位置都不具有旋轉對稱性。在這無窮多個最低能量態之中,只有一個最低能量態能夠被實現,旋轉對稱性因此被打破,造成自發對稱性破缺,因此使規範玻色子獲得質量,同時生成一種零質量玻色子,稱為戈德斯通玻色子,而希子則是伴隨著希格斯場的粒子,是希格斯場的振動。但這戈德斯通玻色子並不符合實際物理。通過選擇適當的規範,戈德斯通玻色子會被抵銷,只存留帶質量希子與帶質量規範玻色子。總括而言,利用自發對稱性破缺,使得規範玻色子獲得質量,這就是希格斯機制。在所有可以賦予規範玻色子質量,而同時又遵守規範理論的可能機制中,這是最簡單的機制。
按照希格斯機制,復值希格斯場(兩個自由度)與零質量規範玻色子(橫場,如同光子一樣,具有兩個自由度)被變換為帶質量標量粒子(希子,一個自由度)與帶質量規範玻色子(戈德斯通玻色子變換為一個縱場,加上先前的橫場,共有三個自由度),自由度守恆。
費米子也是因為與希格斯場相互作用而獲得質量,但它們獲得質量的方式不同於W玻色子、Z玻色子的方式。在規範場論里,為了滿足定域規範不變性,必須設定費米子的質量為零。通過湯川耦合,費米子也可以因為自發對稱性破缺而獲得質量。
標準模型希子的性質
稍微複雜一點,但更實際一點,在最小標準模型(minimal standard model)里,希格斯場是復值二重態,是由兩個復值標量場,或四個實值標量場組成,其中,兩個帶有電荷,兩個是中性。在這模型里,還有四個零質量規範玻色子,都是橫場,如同光子一樣,具有兩個自由度。總合起來,一共有十二個自由度。自發對稱性破缺之後,一共有三個規範玻色子會獲得質量、同時各自添加一個縱場,總共有九個自由度,另外還有一個具有兩個自由度的零質量規範玻色子,剩下的一個自由度是帶質量的希子。三個帶質量規範玻色子分別是W、W和Z玻色子。零質量規範玻色子是光子。由於希格斯場是標量場(不會因洛倫茲變換而改變),希子不具有自旋。希子不帶電荷,是自己的反粒子,具有CP-偶性。
標準模型並沒有預測希子的質量。假若質量在115和180 GeV之間,則能量尺度直到普朗克尺度(10GeV)上限,標準模型都有效。基於標準模型的一些不令人滿意的性質,許多理論學者認為後標準模型的新物理會出現於TeV能量尺度。希子(或其他的電弱對稱性破缺機制)能夠具有的質量的尺度上限是1.4 TeV;超過此上限,標準模型變得不相容,因為對於某些散射過程違反了么正性。現今,學術界有超過一百種不同關於希格斯質量的理論預測。
理論而言,希子的質量或許可以間接估計。在標準模型里,希子會造成一些間接效應。最值得注意的是,希格斯迴路會造成W玻色子質量和Z玻色子質量的小額度修正。通過整體擬合從各個對撞機獲得的精密電弱數據,可以估計希子的質量為94+29
−24GeV,或小於152GeV,置信水平95%。
希子可能會與前面提到的標準模型粒子相互作用,但也可能會與詭秘的大質量弱相互作用粒子相互作用,形成暗物質,這在近期天文物理學研究領域裡,是很重要的論題。
希子的衰變
在量子力學裡,假若粒子有可能衰變成一組質量較輕的粒子,則這粒子必會如此衰變。衰變發生的機率與幾種因素有關:質量差值、耦合強度等等。標準模型已將大多數這些因素設定,希子質量是一個例外。假設希子質量為126GeV,則標準模型預測平均壽命(mean lifetime)大約為1.6×10秒。
由於希子會與每一種“已知”帶質量基本粒子相互作用,希子有很多種不同的衰變道。每種衰變道都有其發生的機率,稱為分支比(branching ratio),定義為這種衰變道發生的次數除以總次數。右圖展示出,標準模型預測的幾種不同衰變模式的分支比與質量之間的關係。
在這幾種希子衰變道之中,有一種衰變道是分裂為費米子反費米子對。對於希子衰變,產物質量越大,則耦合強度越大(呈線性或平方關係)。因此,希子比較可能衰變為較重的費米子,希子應該最常衰變為頂夸克反頂夸克對。但是,這種衰變必須遵守運動學約束,即希子質量必須大於346GeV,頂夸克質量的兩倍。假設希子質量為126GeV,則標準模型預測最常發生的衰變為底夸克反底夸克對,機率為56.1%。第二常發生的衰變是τ子反τ子對,機率為6%。
希子也有可能分裂為一對帶質量規範玻色子。對於這模式,希子最有可能衰變為一對W玻色子,假設希子質量為126GeV,則機率為23.1%。在這之後,W玻色子可以衰變為夸克與反夸克,或者,衰變為輕子與中微子。這最後一種模式不能被重建,因為無法探測到中微子。希子衰變為一對Z玻色子會給出較乾淨的訊號,若果Z玻色子會繼續衰變為易探測的帶電荷輕子反輕子對(電子或μ子)。假設希子質量為126GeV,則機率為2.9%。
希子還可能衰變為零質量膠子,但是中間需要經過夸克圈。對於這模式,最常會經過頂夸克圈,因為頂夸克最重,也因為如此,雖然這是個單圈圖(one-loop diagram),而不是樹圖(tree-level diagram),它發生的衰變機率仍舊可觀,不容忽略。假設希子質量為126GeV,則機率為8.5%。
比較稀有的是希子衰變為零質量光子,機率為0.2%,這過程中間需要經過費米子圈或W玻色子圈。由於光子的能量與動量可以非常準確地測量,衰變粒子的質量可以準確重建出來。所以,在探索低質量希子的實驗中,這過程非常重要。
實驗探索
主條目:希格斯玻色子的實驗探索
為了要製成希子,在粒子對撞機里,兩道粒子束被加速到非常高能量,然後在粒子探測器里相互碰撞,有時候,異乎尋常地,會因此生成產物希子。但是希子會在生成後會在非常短暫時間內發生衰變,無法直接被探測到,探測器只能記錄其所有衰變產物(“衰變特徵”),從這些實驗數據,重建衰變過程,假若符合希子的某種衰變道,則歸類為希子可能被生成事件。實際而言,很多種過程都會出現類似的衰變特徵。很慶幸地是,標準模型精確地預言所有可能衰變模式與對應的或然率,假若探測到更多能夠匹配希子衰變特徵的事件,而不是更多不同於希子衰變特徵的事件,則這應該是希子存在的強烈證據。
在大型強子對撞機里,由於粒子碰撞生成希子的事件機率非常稀有,大約為百億分之一,很多其它種碰撞事件具有類似的衰變特徵,物理學者必須蒐集與分析幾百萬億個碰撞事件,只有顯示出與希子相同衰變特徵的事件才可被視為是可能的希子衰變事件。在確認發現新粒子之前,兩個獨立的粒子探測器(ATLAS與CMS)所觀測到的衰變特徵出自於背景隨機標準模型的事件機率,都必須低於百萬分之一,也就是說,觀測到的事件數量比沒有新粒子的事件數量,兩者之間相異的程度為5個標準差。更多碰撞數據能夠讓物理學者更為正確地辨認新粒子的物理性質,從而決定新粒子是否為標準模型所描述的希子,還是其它種假想粒子。
低能量實驗設施可能無法找到希子,必須建造一座高能量粒子對撞機,這對撞機還需要具有高亮度來確保蒐集到足夠的碰撞數據。另外,還需要高功能電腦設施來有序處理大量碰撞數據(大約25petabyte每年)。至2012年為止,它的附屬電腦設施,全球大型強子對撞機計算格線(Worldwide LHC Computing Grid)已處理了超過三百萬億(3×10)個碰撞事件。這是全球最大的計算格線,隸屬於它的170個電算設施,散布在36國家,是以分散式計算的模式連結在一起。
2012年7月4日以前的探索
最早大規模搜尋希子的實驗設施是歐洲核子研究組織的大型正負電子對撞機,它在1990年代開始運作,直到2000年為止,但它並沒有找到希子的確切存在證據,這是因為它的專長是精密測量粒子的性質。根據大型正負電子對撞機所收集到的數據,標準模型希子的質量下限被設定為114.4 GeV,置信水平95%。這意味著假若希子存在,則它應該會重於114.4GeV/。
費米實驗室的兆電子伏特加速器繼承了先前搜尋希子的任務。1995年,它發現了頂夸克。為了搜尋希子,設施的功能被大大提升,但這並不能保證兆電子伏特加速器會發現希子。在那時期,它是唯一正在運作中的超級對撞機,大型強子對撞機正在建造,超導超大型加速器計畫已於1993年取消。歷經多年運作,兆電子伏特加速器只能對於更進一步排除希子質量值域做出貢獻,由於能量與亮度無法與建成的大型強子對撞機競爭,於2011年9月30日除役。從分析獲得的實驗數據,兆電子伏特加速器團隊排除希子的質量在100-103GeV、147-180GeV以內,置信水平95%。在能量115–140GeV之間區域,超額事件的統計顯著性為2.5個標準差,這對應於在550次事件中,有一次事件是歸咎於統計漲落。這結果仍舊未能達到5個標準差,因此不能夠作定論。
歐洲核子研究組織的大型強子對撞機(LHC)的設計目標之一為能夠確認或排除希子的存在。在瑞士日內瓦附近鄉村的地底下,圓周為27km的坑道里,兩個質子束相撞在一起,最初以3.5TeV每質子束(總共7TeV),大約為兆電子伏特加速器的3.6倍,未來還可提升至2 × 7 TeV(總共14TeV)。根據標準模型,假若希子存在,則這么高能量的碰撞應該能夠將它揭露出來。這是史上最複雜的科學設施之一。在開啟測試後僅僅九天,由於磁鐵與磁鐵之間電接連缺陷,發生磁體失超事件,造成50多個超導磁鐵被毀壞、真空系統被污染,整個運作被迫延遲了14個月,直到2009年11月才再度重新運作。
2010年3月,LHC開始緊鑼密鼓地進行數據蒐集與分析。2011年12月,LHC的兩個主要粒子探測器,超環面儀器(ATLAS)和緊湊μ子線圈(CMS)的實驗團隊,已將希子的可能質量值域縮小至115-130 GeV(ATLAS)與117-127 GeV (CMS)。另外,ATLAS在質量範圍125-126GeV探測到超額事件,統計顯著性為3.6個標準差,CMS在質量範圍124GeV探測到超額事件,統計顯著性為2.6個標準差。由於統計顯著性並不夠大,尚無法做結論或甚至正式當作一個觀察事件。但是,兩個探測器都獨立地在同樣質量附近檢測出超額事件,這事實使得粒子物理社團極其振奮,期望能夠在檢驗完畢2012年的碰撞數據之後,於明年年底排除或確認標準模型希子的存在。CMS團隊發言人吉多·桐迺立(Guido Tonelli)表示:“統計顯著性不夠大,無法做定論。直到今天為止,我們所看到的與背景漲落或與玻色子存在相符合。更仔細的分析與這精心打造的巨環在2012年所貢獻出的更多數據必定會給出一個答案。”
“上帝粒子”
美國物理學家、1988年諾貝爾物理學獎獲得者利昂·萊德曼曾著有粒子物理方面的科普書籍《上帝粒子:如果宇宙是答案,那么問題是什麼?》,後來媒體也沿用了這一稱呼,常常將希子稱作是“上帝粒子”(The God Particle)。這一稱呼激起了公眾媒體對於希子的關注和興趣。萊德曼說他以“上帝粒子”為這粒子命名是因為這粒子“在當今物理學中處於極為中心的位置,對我們理解物質的結構極為關鍵、也極為難以捉摸”。不過他也開玩笑地補充說另一個原因是“圖書出版商不讓他把這粒子稱作‘該死的粒子(Goddamn Particle)’,儘管這別稱可能更恰當地表達了希子杳無蹤跡的性質以及人們為之所付出的代價與遭受到的挫折感。”然而,許多科學家卻不喜歡這一稱呼,因為它過分強調了這粒子的重要性和太宗教化。而且即使這粒子被發現,物理學者仍舊無法回答一些關於強相互作用、電弱相互作用、引力相互作用的統一化問題,以及宇宙的起源問題;希格斯本人是無神論學者。
2009年,英國的《衛報》展開了一次重命希子的競賽,並最終從提交的命名中選擇了“香檳酒瓶玻色子”(champagne bottle boson)作為最佳命名。“香檳酒瓶的瓶底正好是希格斯勢的形狀,而且它常常在物理講座中被用來作為圖解。因此它絕非胡亂編造的名字,而是便於記憶、與物理實際相關的名字。”
參見
•希格斯機制
•希格斯場
•希格斯玻色子的實驗探索
•探尋希格斯玻色子時間軸
•玻色-愛因斯坦統計