圖說四色問題

圖說四色問題

《圖說四色問題》是2008年北京大學出版社出版的圖書,作者是許壽椿。

基本信息

圖說四色問題圖說四色問題
作者:許壽椿

ISBN:10位[7301128002] 13位[9787301128008]

出版社北京大學出版社

出版日期:2008-1-1

定價:¥35.00 元

內容提要

四色問題是“世界最迷人數學難題”之一。如以2005年中國數學網站Mathabc舉行的“世界最迷人的數學難題”的調查為例,共收到36萬餘張選票。“四色猜想(四色問題)’’當選“最迷人數學難題”第二名。這說明我同廣大數學愛好者非常關注此問題。 本書是向廣大科學愛好者介紹著名的“四色問題”的一本普及讀物。本書篇幅不大,但頗具特色。它主要是通過對一些簡單例圖及四色問題歷史上一些著名例圖(如:希伍德反例圖、塔特反例及其同類圖、加德納難四著色圖等),給出了具體的四著色結果,並以罔、表的形式表示出。這些四著色的圖、表及其解說構成本書的主體內容,凶而顯著地降低r閱讀難度。全書圖、表、文字結合,語言通俗易懂,深入淺出,基礎事實資料豐富、新穎、形象具體,較為生動有趣,是一本通俗、直觀、生動的普及讀物。 本書可以作為高中生、理工科大學生、研究生,以及各級數學教師的課外閱讀讀物和教學參考書。

作者簡介

許壽椿,中央民族大學教授。1963年畢業於北京大學數學力學系並留校任教。1985年調人中央民族學院任教,從事計算機軟體、離散數學、中文信息處理等教學和研究工作。曾獲國家科技進步三等獎、閏家民族事務委員會科技進步一等獎。發表論文80餘篇,著作11種,其中暢銷書類著作有:《義字編輯與電腦打字》(中央民族大學出版社,1988年),《電腦打字實用教材》(清華大學出版社,1993年),《電腦文字編輯與數據處理》(清華大學出版社,1993年)。

目錄

第一章 歷史的回顧

1.1 問題的提出

1.2 簡與難的巧妙結合——四色問題迷人之處

1.3 兩個有漏洞的偉大證明

1.4 關於四色問題的幾則逸事

1.5 平凡而又深藏陷阱——四色問題又一迷人之處

1.6 艱難的進展

1.7 怪事:“複雜反簡單,簡單眼複雜”

1.8 加德納的玩笑

1.9 關於四色定理的計算機證明

1.10 近30年來狀況

1.11 關於“最迷人數學難題”的網路評選

第二章 初等圖論和四色問題的數學描述

2.1 描述地圖著色的幾種形式

2.2 數學中的圖(graph)

2.3 平面圖和非平面圖

2.4 歐拉公式

2.5 四色問題特圳關注邊最多的圖

2.6 著二色的奇偶層法

2.7 極大平面圖分解為層圈結構

2.8 二重奇偶層分解

2.9 幻想的分解、實例和理性認識

2.10 四著色的直觀和數位化表示

2.11 用符號表示未得到的四著色

2.12 極大平面圖和平面三次圖

2.13 字母符號使用說明

第三章 叫著色算法和例圖的第一輪計算

3.1 算法A的舉例說明

3.2 算法A的思路和主要步驟

3.3 Maple幫助我們快速、高效地編程

3.4 第一批例圖的選擇確定

3.5 第一批例圖的第一輪計算

3.6 四著色的圖形展示、觀察

3.7 美哉、妙哉——圖形觀察後的感言

第四章全部四著色和四著色不變數

4.1 Kempe二色變換和四著色樹

4.2 四著色樹的計算和觀察

4.3 展示全局結構的四著色樹

4.4 四著色不變數

4.5 四著色不變數的圖說和汪明

4.6 梳理綮多、雜亂為統一、有序的四著色不變數

4.7 關於色多項式計算

4.8 求全部四著色的算法

4.9 第一批例網全部四著色計算結果

4.10 三個著名例圖全部四著色的統計

4.11 四著色實例中的高次點

第五章 四著色類型和哈密頓性

5.1 極大平面圖和平面三次圖

5.2哈密頓圈與樹-樹型四著色

5.3 二元哈密頓圈與樹-圈-樹型四著色

5.4 多元哈密頓圈與四著色的支系參數(Cr,Cs)

5.5 泰特猜想的修正

5.6 把看似無關的慨念聯繫起來

第六章 由計算得到的定理及邏輯證明

6.1 當已經獲得全部四著色時

6.2 由計算得到的定理

6.3 人工邏輯證明和計算機證明

6.4 等待你去探究的無盡奧秘

參考文獻

後記

……

相關詞條

相關搜尋

熱門詞條

聯絡我們