人物經歷
1985年9月-1989年6月:武漢大學生物系微生物專業本科生;
1989年9月-1992年6月:武漢大學生物系微生物專業碩士生;
1992年9月-1995年6月:中國科學院微生物研究所酶室博士生;
1995年7月-1997年9月:武漢大學生命科學學院講師;
1997年10月-2003年10月:武漢大學生命科學學院副教授;
2000年9月-2002年9月:日本國立食品研究所酶室博士後;
2003年10月-現在:武漢大學生命科學學院教授、博士生導師。
♦ 1992-1995:作為博士生在中科院微生物所進行酸性蛋白酶的再摺疊研究;
♦ 1995-2000:作為主持人先後獲武漢市“晨光計畫”、武漢大學“青年學術骨幹”及教育部“高等學校青年骨幹教師培養計畫”資助,在武漢大學生科院從事嗜熱細菌蛋白酶的理論及套用研究。
♦ 2000-2002:獲日本文部科學省資助(STA Fellow)在日本國立食品研究所酶研究室從事豚鼠氣單胞菌蛋白酶的摺疊及加工研究;
♦ 2002-現在:作為主持人先後獲得教育部留學回國人員啟動基金、國家自然科學基金及國家“973”子課題資助,在武漢大學生科院從事極端微生物適應機理研究。同時,以武漢大學“病毒學”國家重點實驗室為依託,開展嗜鹽古菌噬菌體研究。
湖北省微生物學會常務理事。
主要社會兼職:湖北省微生物學會常務理事,湖北省生物工程學會理事,中國微生物學會普通微生物學專業委員會委員。
主講課程
《微生物學》(生科院本科生國際班),54學時;
《生命科學導論》(全校通識課),36學時;
《高級微生物》(碩士生課程);
《微生物生理學》(選修課)36學時;
《極端微生物》(碩士生課程)。
研究方向
· 極端微生物酶(嗜熱、超嗜熱、嗜鹽蛋白酶等)結構與功能、適應機理及定向分子進化;
· 極端嗜鹽古菌及其噬菌體分子遺傳學;
· 極端微生物基因及酶資源開發和套用。
研究方向: 微生物生理生化、微生物遺傳學習及工作簡歷。
主要貢獻
發表研究論文19篇(SCI論文9篇),作為副主編出版學術著作一部。
主持課題項目
作為主持人先後獲武漢市晨光計畫、教育部高等學校青年骨幹教師培養計畫、湖北省傑出青年基金、教育部留學回國人員啟動基金、5項國家自然科學基金面上項目、國家973子課題、教育部博士點基金等資助。
代表作品
發表的論文(*通訊作者):
1. Wang L, Cheng G, Ren Y, Dai Z, Zhao ZS, Liu F, Li S, Wei Y, Xiong J, Tang XF,Tang B*. (2015) Degradation of intact chicken feathers byThermoactinomycessp. CDF and characterization of its keratinolytic protease. Appl Microbiol Biotechnol99(9): 3949-59.
2.Du X, Li M, Tang W, Zhang Y, Zhang L, Wang J, Li T,Tang B, Tang XF*. (2015) Secretion of Tat-dependent halolysin SptA capable of autocatalytic activation and its relation to haloarchaeal growth. Mol Microbiol.96(3):548-65.
3.Zhang Y, Wang M, Du X, Tang W, Zhang L, Li M, Wang J,Tang B, Tang XF*. (2014) Chitin accelerates activation of a novel haloarchaeal serine protease that deproteinizes chitin-containing biomass.Appl Environ Microbiol80(18):5698-708.
4.Zeng J, Gao X, Dai Z,Tang B, Tang XF*. (2014) Effects of metal ions on stability and activity of hyperthermophilic pyrolysin and further stabilization of this enzyme by modification of a Ca-binding site.Appl Environ Microbiol80(9):2763-72.
5.Feng J, Wang J, Zhang Y, Du X, Xu Z, Wu Y, Tang W, Li M,Tang B, Tang XF*. (2014) Proteomic analysis of the secretome of haloarchaeonNatrinemasp. J7−2.J Proteome Res13(3):1248-58
6.Zhu H, Xu BL, Liang X, Yang YR, Tang XF,Tang B*. (2013) Molecular basis for auto- and hetero-catalytic maturation of a thermostable subtilase from thermophilic Bacillus sp.WF146. J Biol Chem288(48):34826-38
7.Feng J, Liu B, Zhang Z, Ren Y, Li Y, Gan F, Huang Y, Chen X, Shen P, Wang L,Tang B*, Tang XF*. (2012) The complete genome sequence ofNatrinemasp. J7-2, a haloarchaeon capable of growth on synthetic media without amino acid supplements.PLoS ONE7(7): e41621. doi:10.1371/journal.pone.0041621
8.Dai Z, Fu H, Zhang Y, Zeng J,Tang B, Tang XF*. (2012) Insights into the maturation of hyperthermophilic pyrolysin and the roles of its N-terminal propeptide and long C-terminal extension.Appl Environ Microbiol78(12):4233-4241
9.Xu Z, Du X, Li T, Gan F,Tang B, Tang XF*. (2011) Functional insight into the C-terminal extension of halolysin SptA from haloarchaeonNatrinemasp. J7.PLoS ONE6(8): e23562. doi:10.1371/journal.pone.0023562
10.Liang X, Bian Y, Tang XF, Xiao G,Tang B*. (2010) Enhancement of keratinolytic activity of a thermophilic subtilase by improving its autolysis resistance and thermostability under reducing conditions.Appl Microbiol Biotechnol.87(3):999-1006
11.Fang N, Zhong CQ, Liang X, Tang XF,Tang B*. (2010) Improvement of extracellular production of a thermophilic subtilase expressed inEscherichia coliby random mutagenesis of its N-terminal propeptide.Appl Microbiol Biotechnol. 85(5):1473-1481.
12.Zhong CQ, Song S, Fang N, Liang X, Zhu H, Tang XF,Tang B*. (2009) Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.Biotechnol Bioeng 104(5):862-70.
13.Cheng G, Zhao P, Tang XF,Tang B*. (2009) Identification and characterization of a novel spore-associated subtilase fromThermoactinomycessp. CDF.Microbiology-SGM. 55:3661-3672.
14.Yang YR, Zhu H, Fang N, Liang X, Zhong CQ, Tang XF, Shen P,Tang B*. (2008) Cold-adapted maturation of thermophilic WF146 protease by mimicking the propeptide binding interactions of psychrophilic subtilisin S41.FEBS Lett.582(17):2620-2626.
15.Bian Y, Liang X, Fang N, Tang XF,Tang B*,Shen P, Peng Z. (2006) The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease. FEBS Lett.580(25):6007-6014. (Faculty 1000 of Biology 6 Recommended)
16.Shi W, Tang XF, Huang Y, Gan F,Tang B*, Shen P. (2006) An extracellular halophilic protease SptA from a halophilic archaeonNatrinemasp. J7: gene cloning, expression and characterization.Extremophiles 10(6):599-606.
17.Wu J, Bian Y,Tang B*, Chen X, Shen P, Peng Z. (2004) Cloning and analysis of WF146 protease, a novel thermophilic subtilisin-like protease with four inserted surface loops. FEMS Microbiol Lett.230(2):251-258.
18.Tang B,Nirasawa S, Kitaoka M, Marie-Claire C, Hayashi K*. (2003) General function of N-terminal propeptide on assisting protein folding and inhibiting catalytic based on observations with a chimeric thermolysin-like protease,Biochem Biophys Res Commun. 301:1093-1098.
19.Tang B,Nirasawa S, Kitaoka M, Hayashi K*. (2002) The role of the N-terminal propeptide of the pro-aminopeptidase processing protease: refolding, processing and enzyme inhibition. Biochem Biophys Res Commun. 296 78-84.
20.Tang B,Nirasawa S, Kitaoka M, Hayashi K*. (2002) In vitro stepwise autoprocessing of the proform of pro-aminopeptidase processing protease fromAeromonas caviaeT-64.Biochim Biophys Acta1696:16-27.
21.Wei C,Tang B, Zhang Y, Yang K*. (1999) Oxidative refolding of recombinant prochymosin. Biochem J., 340:345-351.
22.Tang Band Yang K*. (1994) Assisted refolding of recombinant prochymosin with the aid of protein disulfide isomerase.Biochem J., 301:17-20.