紅移——紅 橙 黃 綠 青 藍 紫——藍移
哈勃定律
Hubble'slaw
1929年,E.P.哈勃發現河外星系視向退行速度v與距離d成正比,即
v=Hd
這個關係稱為哈勃定律,又稱哈勃效應。式中 H 稱為哈勃常數。哈勃定律中,v以千米/秒為單位,d以百萬秒差距為單位,H的單位是千米/(秒·百萬秒差距)。哈勃定律有著廣泛的套用,它是測量遙遠星系距離的唯一有效方法。只要測出星系譜線的紅移,再換算出退行速度,便可由哈勃定律算出該星系的距離。哈勃定律中的速度和距離不是直接可以觀測的量。直接觀測量是紅移和視星等。因此,真正來自觀測、沒有摻進任何假設的是紅移-視星等關係。在此基礎上再加上一些假設,才可得到距離-速度關係。
早在1912年,施里弗(Slipher)就得到了“星雲”的光譜,結果表明許多光譜都具有都卜勒(Doppler)紅移,表明這些“星雲”在朝遠離我們的方向運動。隨後人們知道,這些“星雲”實際上是類似銀河系一樣的星系。
1929年哈勃(Edwin Hubble)對河外星系的視向速度與距離的關係進行了研究。當時只有46個河外星系的視向速度可以利用,而其中僅有24個有推算出的距離,哈勃得出了視向速度與距離之間大致的線性正比關係。現代精確觀測已證實這種線性正比關係
v = H0×d
其中v為退行速度,d為星系距離,H0為比例常數,稱為哈勃常數。這就是著名的哈勃定律。
哈勃定律揭示宇宙是在不斷膨脹的。這種膨脹是一種全空間的均勻膨脹。因此,在任何一點的觀測者都會看到完全一樣的膨脹,從任何一個星系來看,一切星系都以它為中心向四面散開,越遠的星系間彼此散開的速度越大。
哈勃紅移就是光的都卜勒效應。舉例說明,當你用望遠鏡觀察一個高速遠離地球的天體時,它的光譜(說白了就是顏色)就要向紅色方向移動,就是紅移;當觀察一個高速靠近地球的天體時,它的光譜就要向藍色方向移動,就是藍移。在舉一個例子,我們現在看太陽是黃白色的,如果太陽高速遠離我們,我們看到太陽的顏色就會變成橙紅色,這就是紅移了。
紅移——紅 橙 黃 綠 青 藍 紫——藍移
哈勃定律
Hubble'slaw
1929年,E.P.哈勃發現河外星系視向退行速度v與距離d成正比,即
v=Hd
這個關係稱為哈勃定律,又稱哈勃效應。式中 H 稱為哈勃常數。哈勃定律中,v以千米/秒為單位,d以百萬秒差距為單位,H的單位是千米/(秒·百萬秒差距)。哈勃定律有著廣泛的套用,它是測量遙遠星系距離的唯一有效方法。只要測出星系譜線的紅移,再換算出退行速度,便可由哈勃定律算出該星系的距離。哈勃定律中的速度和距離不是直接可以觀測的量。直接觀測量是紅移和視星等。因此,真正來自觀測、沒有摻進任何假設的是紅移-視星等關係。在此基礎上再加上一些假設,才可得到距離-速度關係。
早在1912年,施里弗(Slipher)就得到了“星雲”的光譜,結果表明許多光譜都具有都卜勒(Doppler)紅移,表明這些“星雲”在朝遠離我們的方向運動。隨後人們知道,這些“星雲”實際上是類似銀河系一樣的星系。
1929年哈勃(Edwin Hubble)對河外星系的視向速度與距離的關係進行了研究。當時只有46個河外星系的視向速度可以利用,而其中僅有24個有推算出的距離,哈勃得出了視向速度與距離之間大致的線性正比關係。現代精確觀測已證實這種線性正比關係
v = H0×d
其中v為退行速度,d為星系距離,H0為比例常數,稱為哈勃常數。這就是著名的哈勃定律。
哈勃定律揭示宇宙是在不斷膨脹的。這種膨脹是一種全空間的均勻膨脹。因此,在任何一點的觀測者都會看到完全一樣的膨脹,從任何一個星系來看,一切星系都以它為中心向四面散開,越遠的星系間彼此散開的速度越大。
哈勃紅移就是光的都卜勒效應。舉例說明,當你用望遠鏡觀察一個高速遠離地球的天體時,它的光譜(說白了就是顏色)就要向紅色方向移動,就是紅移;當觀察一個高速靠近地球的天體時,它的光譜就要向藍色方向移動,就是藍移。在舉一個例子,我們現在看太陽是黃白色的,如果太陽高速遠離我們,我們看到太陽的顏色就會變成橙紅色,這就是紅移了。
紅移——紅 橙 黃 綠 青 藍 紫——藍移
哈勃定律
Hubble'slaw
1929年,E.P.哈勃發現河外星系視向退行速度v與距離d成正比,即
v=Hd
這個關係稱為哈勃定律,又稱哈勃效應。式中 H 稱為哈勃常數。哈勃定律中,v以千米/秒為單位,d以百萬秒差距為單位,H的單位是千米/(秒·百萬秒差距)。哈勃定律有著廣泛的套用,它是測量遙遠星系距離的唯一有效方法。只要測出星系譜線的紅移,再換算出退行速度,便可由哈勃定律算出該星系的距離。哈勃定律中的速度和距離不是直接可以觀測的量。直接觀測量是紅移和視星等。因此,真正來自觀測、沒有摻進任何假設的是紅移-視星等關係。在此基礎上再加上一些假設,才可得到距離-速度關係。
早在1912年,施里弗(Slipher)就得到了“星雲”的光譜,結果表明許多光譜都具有都卜勒(Doppler)紅移,表明這些“星雲”在朝遠離我們的方向運動。隨後人們知道,這些“星雲”實際上是類似銀河系一樣的星系。
1929年哈勃(Edwin Hubble)對河外星系的視向速度與距離的關係進行了研究。當時只有46個河外星系的視向速度可以利用,而其中僅有24個有推算出的距離,哈勃得出了視向速度與距離之間大致的線性正比關係。現代精確觀測已證實這種線性正比關係
v = H0×d
其中v為退行速度,d為星系距離,H0為比例常數,稱為哈勃常數。這就是著名的哈勃定律。
哈勃定律揭示宇宙是在不斷膨脹的。這種膨脹是一種全空間的均勻膨脹。因此,在任何一點的觀測者都會看到完全一樣的膨脹,從任何一個星系來看,一切星系都以它為中心向四面散開,越遠的星系間彼此散開的速度越大。
相關詞條
-
紅移
紅移在物理學和天文學領域,指物體的電磁輻射由於某種原因波長增加的現象,在可見光波段,表現為光譜的譜線朝紅端移動了一段距離,即波長變長、頻率降低。紅移的現...
簡史 機制原理 觀測方法 沃爾夫效應 -
哈勃定律
哈勃定律中的速度和距離均是間接觀測得到的量。速度——距離關係和速度——視星等關係,是建立在觀測紅移——視星等關係及一些理論假設前提上的。哈勃定律原來由對...
簡介 定義 發現 常數測量 歷史 -
譜線紅移
對於宇宙譜線紅移,從可能性的角度可能存在三中形成譜線頻移的原因,即:距離效應、都卜勒效應、康普頓效應,本文從理論上提出鑑別那一種是形成主要原因的方法。並...
引言 相對論導致的宇宙觀念 -
紅移[物理學]
紅移在物理學和天文學領域,指物體的電磁輻射由於某種原因波長增加的現象,在可見光波段,表現為光譜的譜線朝紅端移動了一段距離,即波長變長、頻率降低。紅移的現...
簡介 類別 區別 發展歷程 機制原理 -
紅移現象
紅移現象,最初是針對機械波而言的,即一個相對於觀察者運動著的物體離得越遠發出的聲音越渾厚(波長比較長),相反離得越近發出的聲音越尖細(波長比較短)。
定義 分類 紅移現象詳解 意義 -
哈勃常數
哈勃定律:速度和距離均是間接觀測得到的量。速度——距離關係和速度——視星等關係,是建立在觀測紅移——視星等關係及一些理論假設前提上的。哈勃定律原來由對正...
簡介 定義 公式 背景 歷史 -
星系紅移
離我們而去呢? 紅移的本質是什麼?為什麼會存在哈勃定律?這些問題已經....它們的紅移是不是也像正常星系那樣可以解釋為退行並滿足哈勃定律呢?要直接...星系離我們而去的時候光譜發生紅移,叫做星系紅移。 紅移是什麼...
-
愛德溫·哈勃
愛德溫·鮑威爾·哈勃(Edwin Powell Hubble,1889年11月20日—1953年9月28日),美國著名天文學家,研究現代宇宙理論最著名的...
人物生平 主要成就