光電子學與光子學原理與實踐(第二版)(英文版)

光電子學與光子學原理與實踐(第二版)(英文版)

本書的主要內容包括光的波動特性,介質波導和光纖,半導體科學基礎和LED,光放大器和雷射器,光探測器和圖像感測器,光的偏振和調製等。每個章節除了基本的題材,還給出一些附加主題適當介紹先進技術和產品化光電子器件實例,擴大和深化讀者對基本內容的理解。該書力求採用儘可能少的數學推導而強調通過物理概念來說明原理,提供了許多例題,使得課本概念與實際器件相聯繫,也提供了大量的練習題。

圖書內容

本書的主要內容包括光的波動特性,介質波導和光纖,半導體科學基礎和LED,光放大器和雷射器,光探測器和圖像感測器,光的偏振和調製等。每個章節除了基本的題材,還給出一些附加主題適當介紹先進技術和產品化光電子器件實例,擴大和深化讀者對基本內容的理解。該書力求採用儘可能少的數學推導而強調通過物理概念來說明原理,提供了許多例題,使得課本概念與實際器件相聯繫,也提供了大量的練習題。

目錄

Contents

Chapter 1 Wave Nature of Light 19

1.1 Light Waves in a Homogeneous Medium 19

A. Plane Electromagnetic Wave 19

B. Maxwell’s Wave Equation and Diverging Waves 22

Example 1.1.1 A diverging laser beam 26

1.2 Refractive Index and Dispersion 26

Example 1.2.1 Sellmeier equation and diamond 29

Example 1.2.2 Cauchy equation and diamond 30

1.3 Group Velocity and Group Index 30

Example 1.3.1 Group velocity 33

Example 1.3.2 Group velocity and index 33

Example 1.3.3 Group and phase velocities 34

1.4 Magnetic Field, Irradiance, and Poynting Vector 34

Example 1.4.1 Electric and magnetic fields in light 37

Example 1.4.2 Power and irradiance of a Gaussian beam 37

1.5 Snell’s Law and Total Internal Reflection (TIR) 38

Example 1.5.1 Beam displacement 41

1.6 Fresnel’s Equations 42

A. Amplitude Reflection and Transmission Coefficients (r and t ) 42

B. Intensity, Reflectance, and Transmittance 48

C. Goos-Hänchen Shift and Optical Tunneling 49

Example 1.6.1 Reflection of light from a less dense medium (internal

reflection) 51

Example 1.6.2 Reflection at normal incidence, and internal and external

reflection 52

Example 1.6.3 Reflection and transmission at the Brewster angle 53

1.7 Antireflection Coatings and Dielectric Mirrors 54

A. Antireflection Coatings on Photodetectors and Solar Cells 54

Example 1.7.1 Antireflection coating on a photodetector 55

B. Dielectric Mirrors and Bragg Reflectors 56

Example 1.7.2 Dielectric mirror 58

1.8 Absorption of Light and Complex Refractive Index 59

Example 1.8.1 Complex refractive index of InP 62

Example 1.8.2 Reflectance of CdTe around resonance absorption 63

1.9 Temporal and Spatial Coherence 63

Example 1.9.1 Coherence length of LED light 66

1.10 Superposition and Interference of Waves 67

1.11 Multiple Interference and Optical Resonators 69

Example 1.11.1 Resonator modes and spectral width of a semiconductor

Fabry–Perot cavity 73

1.12 Diffraction Principles 74

A. Fraunhofer Diffraction 74

Example 1.12.1 Resolving power of imaging systems 79

B. Diffraction Grating 80

Example 1.12.2 A reflection grating 83

Additional Topics 84

1.13 Interferometers 84

1.14 Thin Film Optics: Multiple Reflections in Thin Films 86

Example 1.14.1 Thin film optics 88

1.15 Multiple Reflections in Plates and Incoherent Waves 89

1.16 Scattering of Light 90

1.17 Photonic Crystals 92

Questions and Problems 98

Chapter 2 Dielectric Waveguides and Optical Fibers 111

2.1 Symmetric Planar Dielectric Slab Waveguide 111

A. Waveguide Condition 111

B. Single and Multimode Waveguides 116

C. TE and TM Modes 116

Example 2.1.1 Waveguide modes 117

Example 2.1.2 V-number and the number of modes 118

Example 2.1.3 Mode field width, 2wo 119

2.2 Modal and Waveguide Dispersion in Planar

Waveguides 120

A. Waveguide Dispersion Diagram and Group Velocity 120

B. Intermodal Dispersion 121

C. Intramodal Dispersion 122

2.3 Step-Index Optical Fiber 123

A. Principles and Allowed Modes 123

Example 2.3.1 A multimode fiber 128

Example 2.3.2 A single-mode fiber 128

B. Mode Field Diameter 128

Example 2.3.3 Mode field diameter 129

C. Propagation Constant and Group Velocity 130

Example 2.3.4 Group velocity and delay 131

D. Modal Dispersion in Multimode Step-Index Fibers 132

Example 2.3.5 A multimode fiber and dispersion 132

2.4 Numerical Aperture 133

Example 2.4.1 A multimode fiber and total acceptance angle 134

Example 2.4.2 A single-mode fiber 134

2.5 Dispersion In Single-Mode Fibers 135

A. Material Dispersion 135

B. Waveguide Dispersion 136

C. Chromatic Dispersion 138

D. Profile and Polarization Dispersion Effects 138

Example 2.5.1 Material dispersion 140

Example 2.5.2 Material, waveguide, and chromatic dispersion 141

Example 2.5.3 Chromatic dispersion at different wavelengths 141

Example 2.5.4 Waveguide dispersion 142

2.6 Dispersion Modified Fibers and Compensation 142

A. Dispersion Modified Fibers 142

B. Dispersion Compensation 144

Example 2.6.1 Dispersion compensation 146

2.7 Bit Rate, Dispersion, and Electrical and Optical Bandwidth 146

A. Bit Rate and Dispersion 146

B. Optical and Electrical Bandwidth 149

Example 2.7.1 Bit rate and dispersion for a single-mode fiber 151

2.8 The Graded Index (GRIN) Optical Fiber 151

A. Basic Properties of GRIN Fibers 151

B. Telecommunications 155

Example 2.8.1 Dispersion in a graded index fiber and bit rate 156

Example 2.8.2 Dispersion in a graded index fiber and bit rate 157

2.9 Attenuation in Optical Fibers 158

A. Attenuation Coefficient and Optical Power Levels 158

Example 2.9.1 Attenuation along an optical fiber 160

B. Intrinsic Attenuation in Optical Fibers 160

C. Intrinsic Attenuation Equations 162

Example 2.9.2 Rayleigh scattering equations 163

D. Bending losses 164

Example 2.9.3 Bending loss for SMF 167

2.10 Fiber Manufacture 168

A. Fiber Drawing 168

B. Outside Vapor Deposition 169

Example 2.10.1 Fiber drawing 171

Additional Topics 171

2.11 Wavelength Division Multiplexing: WDM 171

2.12 Nonlinear Effects in Optical Fibers and DWDM 173

2.13 Bragg Fibers 175

2.14 Photonic Crystal Fibers—Holey Fibers 176

2.15 Fiber Bragg Gratings and Sensors 179

Example 2.15.1 Fiber Bragg grating at 1550 nm 183

Questions and Problems 183

Chapter 3 Semiconductor Science and Light-Emitting Diodes 195

3.1 Review of Semiconductor Concepts and Energy Bands 195

A. Energy Band Diagrams, Density of States, Fermi–Dirac

Function and Metals 195

B. Energy Band Diagrams of Semiconductors 198

3.2 Semiconductor Statistics 200

3.3 Extrinsic Semiconductors 203

A. n-Type and p-Type Semiconductors 203

B. Compensation Doping 206

C. Nondegenerate and Degenerate Semiconductors 207

D. Energy Band Diagrams in an Applied Field 208

Example 3.3.1 Fermi levels in semiconductors 209

Example 3.3.2 Conductivity of n-Si 209

3.4 Direct and Indirect Bandgap Semiconductors:

E–k Diagrams 210

3.5 pn Junction Principles 214

A. Open Circuit 214

B. Forward Bias and the Shockley Diode Equation 217

C. Minority Carrier Charge Stored in Forward Bias 222

D. Recombination Current and the Total Current 222

3.6 pn Junction Reverse Current 225

3.7 pn Junction Dynamic Resistance and Capacitances 227

A. Depletion Layer Capacitance 227

B. Dynamic Resistance and Diffusion Capacitance

for Small Signals 229

3.8 Recombination Lifetime 230

A. Direct Recombination 230

B. Indirect Recombination 232

Example 3.8.1 A direct bandgap pn junction 232

3.9 pn Junction Band Diagram 234

A. Open Circuit 234

B. Forward and Reverse Bias 236

Example 3.9.1 The built-in voltage from the band diagram 237

3.10 Heterojunctions 238

3.11 Light-Emitting Diodes: Principles 240

A. Homojunction LEDs 240

B. Heterostructure High Intensity LEDs 242

C. Output Spectrum 244

Example 3.11.1 LED spectral linewidth 247

Example 3.11.2 LED spectral width 248

Example 3.11.3 Dependence of the emission peak and linewidth

on temperature 249

3.12 Quantum Well High Intensity LEDs 249

Example 3.12.1 Energy levels in the quantum well 252

3.13 LED Materials and Structures 253

A. LED Materials 253

B. LED Structures 254

Example 3.13.1 Light extraction from a bare LED chip 257

3.14 LED Efficiencies and Luminous Flux 258

Example 3.14.1 LED efficiencies 260

Example 3.14.2 LED brightness 261

3.15 Basic LED Characteristics 261

3.16 LEDs for Optical Fiber Communications 262

3.17 Phosphors and White LEDs 265

Additional Topics 267

3.18 LED Electronics 267

Questions and Problems 270

Chapter 4 Stimulated Emission Devices: Optical Amplifiers and Lasers 281

4.1 Stimulated Emission, Photon Amplification, and Lasers 281

A. Stimulated Emission and Population Inversion 281

B. Photon Amplification and Laser Principles 282

C. Four-Level Laser System 285

4.2 Stimulated Emission Rate and Emission Cross-Section 286

A. Stimulated Emission and Einstein Coefficients 286

Example 4.2.1 Minimum pumping power for three-level laser systems 288

B. Emission and Absorption Cross-Sections 289

Example 4.2.2 Gain coefficient in a Nd3-doped glass fiber 291

4.3 Erbium-Doped Fiber Amplifiers 292

A. Principle of Operation and Amplifier Configurations 292

B. EDFA Characteristics, Efficiency, and Gain Saturation 296

Example 4.3.1 An erbium-doped fiber amplifier 299

C. Gain-Flattened EDFAs and Noise Figure 300

4.4 Gas Lasers: The He-Ne Laser 303

Example 4.4.1 Efficiency of the He-Ne laser 306

4.5 The Output Spectrum of a Gas Laser 306

Example 4.5.1 Doppler broadened linewidth 309

4.6 Laser Oscillations: Threshold Gain Coefficient

and Gain Bandwidth 311

A. Optical Gain Coefficient g 311

B. Threshold Gain Coefficient gth and Output Power 312

Example 4.6.1 Threshold population inversion for the He-Ne laser 315

C. Output Power and Photon Lifetime in the Cavity 315

Example 4.6.2 Output power and photon cavity lifetime Tph 317

D. Optical Cavity, Phase Condition, Laser Modes 317

4.7 Broadening of the Optical Gain Curve and Linewidth 319

4.8 Pulsed Lasers: Q-Switching and Mode Locking 323

A. Q-Switching 323

B. Mode Locking 326

4.9 Principle of the Laser Diode 327

4.10 Heterostructure Laser Diodes 331

Example 4.10.1 Modes in a semiconductor laser and the optical

cavity length 336

4.11 Quantum Well Devices 337

Example 4.11.1 A GaAs quantum well 339

4.12 Elementary Laser Diode Characteristics 340

Example 4.12.1 Laser output wavelength variation with temperature 346

Example 4.12.2 Laser diode efficiencies for a sky-blue LD 346

Example 4.12.3 Laser diode efficiencies 347

4.13 Steady State Semiconductor Rate Equations:

The Laser Diode Equation 348

A. Laser Diode Equation 348

B. Optical Gain Curve, Threshold, and Transparency

Conditions 351

Example 4.13.1 Threshold current and optical output power from

a Fabry–Perot heterostructure laser diode 352

4.14 Single Frequency Semiconductor Lasers 354

A. Distributed Bragg Reflector LDs 354

B. Distributed Feedback LDs 355

C. External Cavity LDs 358

Example 4.14.1 DFB LD wavelength 360

4.15 Vertical Cavity Surface Emitting Lasers 360

4.16 Semiconductor Optical Amplifiers 364

Additional Topics 366

4.17 Superluminescent and Resonant Cavity Leds:

SLD and Rcled 366

4.18 Direct Modulation of Laser Diodes 367

4.19 Holography 370

Questions and Problems 373

Chapter 5 Photodetectors and Image Sensors 381

5.1 Principle of the pn Junction Photodiode 381

A. Basic Principles 381

B. Energy Band Diagrams and Photodetection Modes 383

C. Current-Voltage Convention and Modes of Operation 385

5.2 Shockley–Ramo Theorem and External Photocurrent 386

5.3 Absorption Coefficient and Photodetector Materials 388

5.4 Quantum Efficiency and Responsivity 391

Example 5.4.1 Quantum efficiency and responsivity 394

Example 5.4.2 Maximum quantum efficiency 395

5.5 The pin Photodiode 395

Example 5.5.1 Operation and speed of a pin photodiode 399

Example 5.5.2 Photocarrier diffusion in a pin photodiode 399

Example 5.5.3 Responsivity of a pin photodiode 400

Example 5.5.4 Steady state photocurrent in the pin photodiode 401

5.6 Avalanche Photodiode 402

A. Principles and Device Structures 402

Example 5.6.1 InGaAs APD responsivity 406

Example 5.6.2 Silicon APD 406

B. Impact Ionization and Avalanche Multiplication 406

Example 5.6.3 Avalanche multiplication in Si APDs 408

5.7 Heterojunction Photodiodes 409

A. Separate Absorption and Multiplication APD 409

B. Superlattice APDs 411

5.8 Schottky Junction Photodetector 413

5.9 Phototransistors 417

5.10 Photoconductive Detectors and Photoconductive

Gain 418

5.11 Basic Photodiode Circuits 421

5.12 Noise in Photodetectors 424

A. The pn Junction and pin Photodiodes 424

Example 5.12.1 NEP of a Si pin photodiode 428

Example 5.12.2 Noise of an ideal photodetector 428

Example 5.12.3 SNR of a receiver 429

B. Avalanche Noise in the APD 430

Example 5.12.4 Noise in an APD 430

5.13 Image Sensors 431

A. Basic Principles 431

B. Active Matrix Array and CMOS Image Sensors 433

C. Charge-Coupled Devices 435

Additional Topics 437

5.14 Photovoltaic Devices: Solar Cells 437

A. Basic Principles 437

B. Operating Current and Voltage and Fill Factor 439

C. Equivalent Circuit of a Solar Cell 440

D. Solar Cell Structures and Efficiencies 442

Example 5.14.1 Solar cell driving a load 444

Example 5.14.2 Open circuit voltage and short circuit current 445

Questions and Problems 445

Chapter 6 Polarization and Modulation of Light 457

6.1 Polarization 457

A. State of Polarization 457

Example 6.1.1 Elliptical and circular polarization 460

B. Malus’s Law 460

6.2 Light Propagation in an Anisotropic Medium:

Birefringence 461

A. Optical Anisotropy 461

B. Uniaxial Crystals and Fresnel’s Optical Indicatrix 463

C. Birefringence of Calcite 466

D. Dichroism 467

6.3 Birefringent Optical Devices 468

A. Retarding Plates 468

Example 6.3.1 Quartz-half wave plate 469

Example 6.3.2 Circular polarization from linear polarization 470

B. Soleil–Babinet Compensator 470

C. Birefringent Prisms 471

6.4 Optical Activity and Circular Birefringence 472

6.5 Liquid Crystal Displays 474

6.6 Electro-Optic Effects 478

A. Definitions 478

B. Pockels Effect 479

Example 6.6.1 Pockels Cell Modulator 484

C. Kerr Effect 484

Example 6.6.2 Kerr Effect Modulator 486

6.7 Integrated Optical Modulators 486

A. Phase and Polarization Modulation 486

B. Mach–Zehnder Modulator 487

C. Coupled Waveguide Modulators 489

Example 6.7.1 Modulated Directional Coupler 492

6.8 Acousto-Optic Modulator 492

A. Photoelastic Effect and Principles 492

B. Acousto-Optic Modulators 494

Example 6.8.1 AO Modulator 499

6.9 Faraday Rotation and Optical Isolators 499

Example 6.9.1 Faraday rotation 500

6.10 Nonlinear Optics and Second Harmonic Generation 501

Additional Topics 505

6.11 Jones Vectors 505

Questions and Problems 506

Appendices

Appendix AGaussian

Distribution 514

Appendix B Solid Angles 516

Appendix C Basic Radiometry and Photometry 518

Appendix DUseful

Mathematical Formulae 521

Appendix ENotation

and Abbreviations 523

Index 535

相關詞條

熱門詞條

聯絡我們