不鏽鋼碟閥

採用染色法試驗,在顯微鏡下觀察析出相變化不明顯,故採用了熱處理的方法來鑑別σ相。 綜合染色試臉、熱處理試驗的結果,認為不鏽鋼碟閥組織中的析出相不是σ相。 ②通過SEM觀察,確認蝶閥的組織中析出相是以鉻為主的碳化物,這種共晶組織沿晶界分布。

概述

不鏽鋼碟閥由上海博球防腐閥門打造作為一種用來實現管路系統通斷及流量控制的部件,已在石油、化工、冶金、水電等許多領域中得到極為廣泛地套用。在已公知的蝶閥技術中,其密封形式多採用密封結構,密封材料為橡膠、聚四氟乙烯等。由於結構特徵的限制,不適應耐高溫、高壓及耐腐蝕、抗磨損等行業。現有一種比較先進的蝶閥是三偏心金屬硬密封蝶閥,閥體和閥座為連體構件,閥座密封表面層堆焊耐溫、耐蝕合金材料。多層軟疊式密封圈固定在閥板上,這種蝶閥與傳統蝶閥相比具有耐高溫,操作輕便,啟閉無磨擦,關閉時隨著傳動機構的力矩增大來補償密封,提高了蝶閥的密封性能及延長使用壽命的優點。

特點

不鏽鋼碟閥的特點:

1、啟閉方便迅速、省力、流體阻力小,可以經常操作。
2、結構簡單,體積小,重量輕。
3、可以運送泥漿,在管道口積存液體最少。
4、低壓下,可以實現良好的密封。
5、調節性能好。

鏽蝕解決方法

不鏽鋼碟閥在使用過程中出現鏽蝕現象。經過金相組織分析、染色試臉、熱處理試臉、SEM等試驗分析,找到了材料鏽蝕的關鍵因素是因為材料中沿晶界的碳化物析出形成貧鉻區,從而造成不不鏽鋼蝶閥鏽蝕。
材質為CF8M的不鏽鋼蝶閥在使用過程中出現鏽蝕現象。奧氏體不鏽鋼經正常熱處理後,室溫下組織應為奧氏體,耐蝕性能很好。為了分析蝶閥的鏽蝕原因,在其上取樣進行分析。
1、試驗方法
取樣進行化學成分分析(判斷是否符合標準要求)、金相組織檢查、熱處理工藝試驗及SEM分析。
2、試驗結果及分析
2.1化學成分
化學成分分析結果及標準成分。
2.2金相分析
不鏽鋼碟閥從出現鏽蝕現象的蝶閥上切取了金相試樣,經磨製拋光後,用三氯化鐵水溶液腐蝕,在Neophot-32金相顯徽鏡上觀察分析,其金相組織由奧氏體與另一種析出物組成。從理論上講奧氏體不鏽鋼經正常熱處理後,應得到均一奧氏體組織。組織中出現的另一析出物究竟是何組織,有兩種判斷:一是σ相,另一種是碳化物。σ相與碳化物形成的條件不同,但都具有一個共同的特點,那就是造成奧氏體不鏽鋼對晶間腐蝕的敏感性。
首先採用了雜色法進行σ相的鑑別。採用鹼性赤血鹽水溶液(赤血鹽10g+氫氧化鉀10g+水100ml),試樣在該試劑中煮沸2~4min後,鐵素體呈黃色,碳化物被腐蝕,奧氏體呈光亮色,σ相由褐色變為黑色。用上述方法將從蝶閥上切取的試樣在鹼性赤血鹽水溶液中煮沸4min後,在顯徽鏡下觀察,析出物保持了原形貌,未發現明顯變化。因此決定採用熱處理的方法進一步試臉分析。2.3熱處理試驗分析
相是一種鐵鉻原子比例大致相等的金屬間化合物。化學成分、鐵素體、冷變形、溫變都不同程度地對σ相形成產生影響。採用染色法試驗,在顯微鏡下觀察析出相變化不明顯,故採用了熱處理的方法來鑑別σ相。有關資料介紹,σ相通常是在500~800℃長期時效中形成的。這是因為較高的溫度下時效有利於鉻的擴散。再高溫度加熱σ相將開始溶解,溶解完畢至少要在920℃以上。在高於σ相的穩定溫度加熱可使之消除。形成σ相所需時間雖然很長,但消除σ相一般只要短時間加熱即可。根據這一理論,制定了熱處理工藝,觀察組織中的析出相是否可以消除。將從蝶閥上切取的試樣加熱到940℃,保溫30min,然後在Neophot-32金相顯微鏡上觀察分析。經熱處理後的試樣中的析出相沒有消除,並保持原形貌,由此證明了該組織中的析出相有可能不是σ相。
2.3SEM分析
有時鋼中出現的相,採用任何染色的方法均無法辨別其頗色,可採用SEM的分析方法來鑑別。因為已知σ相為鐵與鉻的化合物,含鉻量為42%~48%,通過EDS定性和定量分析測出未知相的組成元素及其含量,從而確定未知相。
EDS分析結果表明,析出物的含鉻量為33.6%,明顯高於基體中的Cr含量16.3%,而σ相的含鉻量是42%~48%,因而否認析出相為σ相。綜合染色試臉、熱處理試驗的結果,認為不鏽鋼碟閥組織中的析出相不是σ相。經SEM觀察析出相為一種共晶組織,是以鉻為主的碳化物。
不鏽鋼碟閥的材料為鎳鉻奧氏體不鏽鋼,這種材料一般都在固溶狀態下使用。在室溫狀態下,其組織為奧氏體,奧氏體不鏽鋼在廣泛的腐蝕介質中特別是大氣中具有良好的抗腐蝕能力。對不鏽鋼蝶閥鏽蝕的原因分析如下:
①綜合上述各項試驗的結果,可判定蝶閥材料組織中析出相不是σ相,故蝶閥的鏽蝕現象不是由σ相引起的。
②通過SEM觀察,確認蝶閥的組織中析出相是以鉻為主的碳化物,這種共晶組織沿晶界分布。EDS分析結果表明這種分布在晶界上的碳化物鉻含量明顯高於基體。這種碳化物是M23C6型。隨碳化物的析出,又得不到鉻的擴散補充時,以碳化鉻的形式沿奧氏體晶界析出,在碳化物周圍形成貧鉻區,從而奧氏體不鏽鋼晶界易被腐蝕。所以沿晶界析出的碳化物是造成蝶閥鏽蝕的主要原因。
③經固溶處理後的奧氏體不鏽鋼,由於在高溫加熱時大部分碳化物被溶解,奧氏體中飽和了大量的碳與鉻,並因隨後的快速冷卻而固定下來,使材料有很商的耐腐蝕性。因此應嚴格控制熱處理工藝,固溶處理時將工件加熱至高退,使碳化物充分溶解,然後迅速冷卻,得到均一奧氏休組織。固溶處理後,如果採用緩慢冷卻,在冷卻過程中碳化鉻將沿晶界析出,從而導致材料耐腐蝕性能降低。

相關詞條

熱門詞條

聯絡我們