材料信息
中文名稱:金屬材料
英文名稱:metal material
意義
人類文明的發展和社會的進步同金屬材料關係十分密切。繼石器時代之後出現的銅器時代、鐵器時代。均以金屬材料的套用為其時代的顯著標誌。現代,種類繁多的金屬材料已成為人類社會發展的重要物質基礎。
種類
金屬材料通常分為黑色金屬、有色金屬和特種金屬材料。
①黑色金屬又稱鋼鐵材料,包括雜質總含量<0.2%及含碳量不超過0.0218%的工業純鐵,含碳0.0218%~2.11%的鋼,含碳大於 2.11%的鑄鐵。廣義的黑色金屬還包括鉻、錳及其合金。
②有色金屬是指除鐵、鉻、錳以外的所有金屬及其合金,通常分為輕金屬、重金屬、貴金屬、半金屬、稀有金屬和稀土金屬等,有色合金的強度和硬度一般比純金屬高,並且電阻大、電阻溫度係數小。
③特種金屬材料包括不同用途的結構金屬材料和功能金屬材料。其中有通過快速冷凝工藝獲得的非晶態金屬材料,以及準晶、微晶、納米晶金屬材料等;還有隱身、抗氫、超導、形狀記憶、耐磨、減振阻尼等特殊功能合金以及金屬基複合材料等。
特殊性質
疲勞
許多機械零件和工程構件,是承受交變載荷工作的。在交變載荷的作用下,雖然應力水平低於材料的屈服極限,但經過長時間的應力反覆循環作用以後,也會發生突然脆性斷裂,這種現象叫做金屬材料的疲勞。
金屬材料疲勞斷裂的特點是:
⑴載荷應力是交變的;
⑵載荷的作用時間較長;
⑶斷裂是瞬時發生的;
⑷無論是塑性材料還是脆性材料,在疲勞斷裂區都是脆性的。
所以,疲勞斷裂是工程上最常見、最危險的斷裂形式。
金屬材料的疲勞現象,按條件不同可分為下列幾種:
⑴高周疲勞:指在低應力(工作應力低於材料的屈服極限,甚至低於彈性極限)條件下,應力循環周數在100000以上的疲勞。它是最常見的一種疲勞破壞。高周疲勞一般簡稱為疲勞。
⑵低周疲勞:指在高應力(工作應力接近材料的屈服極限)或高應變條件下,應力循環周數在10000~100000以下的疲勞。由於交變的塑性應變在這種疲勞破壞中起主要作用,因而,也稱為塑性疲勞或應變疲勞。
⑶熱疲勞:指由於溫度變化所產生的熱應力的反覆作用,所造成的疲勞破壞。
⑷腐蝕疲勞:指機器部件在交變載荷和腐蝕介質(如酸、鹼、海水、活性氣體等)的共同作用下,所產生的疲勞破壞。
⑸接觸疲勞:這是指機器零件的接觸表面,在接觸應力的反覆作用下,出現麻點剝落或表面壓碎剝落,從而造成機件失效破壞。
塑性
塑性是指金屬材料在載荷外力的作用下,產生永久變形(塑性變形)而不被破壞的能力。金屬材料在受到拉伸時,長度和橫截面積都要發生變化,因此,金屬的塑性可以用長度的伸長(延伸率)和斷面的收縮(斷面收縮率)兩個指標來衡量。
金屬材料的延伸率和斷面收縮率愈大,表示該材料的塑性愈好,即材料能承受較大的塑性變形而不破壞。一般把延伸率大於百分之五的金屬材料稱為塑性材料(如低碳鋼等),而把延伸率小於百分之五的金屬材料稱為脆性材料(如灰口鑄鐵等)。塑性好的材料,它能在較大的巨觀範圍內產生塑性變形,並在塑性變形的同時使金屬材料因塑性變形而強化,從而提高材料的強度,保證了零件的安全使用。此外,塑性好的材料可以順利地進行某些成型工藝加工,如衝壓、冷彎、冷拔、校直等。因此,選擇金屬材料作機械零件時,必須滿足一定的塑性指標。
耐久性
建築金屬腐蝕的主要形態
①均勻腐蝕。金屬表面的腐蝕使斷面均勻變薄。因此,常用年平均的厚度減損值作為腐蝕性能的指標(腐蝕率)。鋼材在大氣中一般呈均勻腐蝕。
②孔蝕。金屬腐蝕呈點狀並形成深坑。孔蝕的產生與金屬的本性及其所處介質有關。在含有氯鹽的介質中易發生孔蝕。孔蝕常用最大孔深作為評定指標。管道的腐蝕多考慮孔蝕問題。
③電偶腐蝕。不同金屬的接觸處,因所具不同電位而產生的腐蝕。
④縫隙腐蝕。金屬表面在縫隙或其他隱蔽區域部常發生由於不同部位間介質的組分和濃度的差異所引起的局部腐蝕。
⑤應力腐蝕。在腐蝕介質和較高拉應力共同作用下,金屬表面產生腐蝕並向內擴展成微裂紋,常導致突然破斷。混凝土中的高強度鋼筋(鋼絲)可能發生這種破壞。
硬度
硬度表示材料抵抗硬物體壓入其表面的能力。它是金屬材料的重要性能指標之一。一般硬度越高,耐磨性越好。常用的硬度指標有布氏硬度、洛氏硬度和維氏硬度。
1.布氏硬度(HB)以一定的載荷(一般3000kg)把一定大小(直徑一般為10mm)的淬硬鋼球壓入材料表面,保持一段時間,去載後,負荷與其壓痕面積之比值,即為布氏硬度值(HB),單位為公斤力/mm2 (N/mm2)。
2.洛氏硬度(HR)當HB>450或者試樣過小時,不能採用布氏硬度試驗而改用洛氏硬度計量。它是用一個頂角120°的金剛石圓錐體或直徑為1.59、3.18mm的鋼球,在一定載荷下壓入被測材料表面,由壓痕的深度求出材料的硬度。根據試驗材料硬度的不同,可採用不同的壓頭和總試驗壓力組成幾種不同的洛氏硬度標尺,每一種標尺用一個字母在洛氏硬度符號HR後面加以註明。常用的洛氏硬度標尺是A、B、C三種(HRA、HRB、HRC)。其中C標尺套用最為廣泛。
HRA:是採用60kg載荷鑽石錐壓入器求得的硬度,用於硬度極高的材料(如硬質合金等)。
HRB:是採用100kg載荷和直徑1.58mm淬硬的鋼球,求得的硬度,用於硬度較低的材料(如退火鋼、鑄鐵等)。
HRC:是採用150kg載荷和鑽石錐壓入器求得的硬度,用於硬度很高的材料(如淬火鋼等)。
3.維氏硬度(HV)以120kg以內的載荷和頂角為136°的金剛石方形錐壓入器壓入材料表面,用材料壓痕凹坑的表面積除以載荷值,即為維氏硬度值(HV)。
硬度試驗是機械性能試驗中最簡單易行的一種試驗方法。為了能用硬度試驗代替某些機械性能試驗,生產上需要一個比較準確的硬度和強度的換算關係。實踐證明,金屬材料的各種硬度值之間,硬度值與強度值之間具有近似的相應關係。因為硬度值是由起始塑性變形抗力和繼續塑性變形抗力決定的,材料的強度越高,塑性變形抗力越高,硬度值也就越高。
具體性能
金屬材料的性能決定著材料的適用範圍及套用的合理性。金屬材料的性能主要分為四個方面,即:機械性能、化學性能、物理性能、工藝性能。
機械性能
一應力的概念,物體內部單位截面積上承受的力稱為應力。由外力作用引起的應力稱為工作應力,在無外力作用條件下平衡於物體內部的應力稱為內應力(例如組織應力、熱應力、加工過程結束後留存下來的殘餘應力…等等)。
二機械性能,金屬在一定溫度條件下承受外力(載荷)作用時,抵抗變形和斷裂的能力稱為金屬材料的機械性能(也稱為力學性能)。金屬材料承受的載荷有多種形式,它可以是靜態載荷,也可以是動態載荷,包括單獨或同時承受的拉伸應力、壓應力、彎曲應力、剪下應力、扭轉應力,以及摩擦、振動、衝擊等等。
金屬材料的機械性能是零件的設計和選材時的主要依據。外載入荷性質不同(例如拉伸、壓縮、扭轉、衝擊、循環載荷等),對金屬材料要求的機械性能也將不同。常用的機械性能包括:強度、塑性、硬度、衝擊韌性、多次衝擊抗力和疲勞極限等。
強度
強度是指金屬材料在靜荷作用下抵抗破壞(過量塑性變形或斷裂)的性能。由於載荷的作用方式有拉伸、壓縮、彎曲、剪下等形式,所以強度也分為抗拉強度、抗壓強度、抗彎強度、抗剪強度等。各種強度間常有一定的聯繫,使用中一般較多以抗拉強度作為最基本的強度指針。
塑性
塑性是指金屬材料在載荷作用下,產生塑性變形(永久變形)而不破壞的能力。
硬度
硬度是衡量金屬材料軟硬程度的指針。目前生產中測定硬度方法最常用的是壓入硬度法,它是用一定幾何形狀的壓頭在一定載荷下壓入被測試的金屬材料表面,根據被壓入程度來測定其硬度值。
常用的方法有布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)和維氏硬度(HV)等方法。
疲勞
前面所討論的強度、塑性、硬度都是金屬在靜載荷作用下的機械性能指針。實際上,許多機器零件都是在循環載荷下工作的,在這種條件下零件會產生疲勞。
衝擊韌性
以很大速度作用於機件上的載荷稱為衝擊載荷,金屬在衝擊載荷作用下抵抗破壞的能力叫做衝擊韌性。
化學性能
金屬與其他物質引起化學反應的特性稱為金屬的化學性能。在實際套用中主要考慮金屬的抗蝕性、抗氧化性(又稱作氧化抗力,這是特別指金屬在高溫時對氧化作用的抵抗能力或者說穩定性),以及不同金屬之間、金屬與非金屬之間形成的化合物對機械性能的影響等等。在金屬的化學性能中,特別是抗蝕性對金屬的腐蝕疲勞損傷有著重大的意義。
物理性能
金屬的物理性能主要考慮:
⑴密度(比重):ρ=P/V單位克/立方厘米或噸/立方米,式中P為重量,V為體積。在實際套用中,除了根據密度計算金屬零件的重量外,很重要的一點是考慮金屬的比強度(強度σb與密度ρ之比)來幫助選材,以及與無損檢測相關的聲學檢測中的聲阻抗(密度ρ與聲速C的乘積)和射線檢測中密度不同的物質對射線能量有不同的吸收能力等等。
⑵熔點:金屬由固態轉變成液態時的溫度,對金屬材料的熔煉、熱加工有直接影響,並與材料的高溫性能有很大關係。
⑶熱膨脹性隨著溫度變化,材料的體積也發生變化(膨脹或收縮)的現象稱為熱膨脹,多用線膨脹係數衡量,亦即溫度變化1℃時,材料長度的增減量與其0℃時的長度之比。熱膨脹性與材料的比熱有關。在實際套用中還要考慮比容(材料受溫度等外界影響時,單位重量的材料其容積的增減,即容積與質量之比),特別是對於在高溫環境下工作,或者在冷、熱交替環境中工作的金屬零件,必須考慮其膨脹性能的影響。
⑷磁性能吸引鐵磁性物體的性質即為磁性,它反映在導磁率、磁滯損耗、剩餘磁感應強度、矯頑磁力等參數上,從而可以把金屬材料分成順磁與逆磁、軟磁與硬磁材料。
⑸電學性能主要考慮其電導率,在電磁無損檢測中對其電阻率和渦流損耗等都有影響。
工藝性能
金屬對各種加工工藝方法所表現出來的適應性稱為工藝性能,主要有以下四個方面:
⑴切削加工性能:反映用切削工具(例如車削、銑削、刨削、磨削等)對金屬材料進行切削加工的難易程度。
⑵可鍛性:反映金屬材料在壓力加工過程中成型的難易程度,例如將材料加熱到一定溫度時其塑性的高低(表現為塑性變形抗力的大小),允許熱壓力加工的溫度範圍大小,熱脹冷縮特性以及與顯微組織、機械性能有關的臨界變形的界限、熱變形時金屬的流動性、導熱性能等。
⑶可鑄性:反映金屬材料熔化澆鑄成為鑄件的難易程度,表現為熔化狀態時的流動性、吸氣性、氧化性、熔點,鑄件顯微組織的均勻性、緻密性,以及冷縮率等。
⑷可焊性:反映金屬材料在局部快速加熱,使結合部位迅速熔化或半熔化(需加壓),從而使結合部位牢固地結合在一起而成為整體的難易程度,表現為熔點、熔化時的吸氣性、氧化性、導熱性、熱脹冷縮特性、塑性以及與接縫部位和附近用材顯微組織的相關性、對機械性能的影響等。
分類方法
按化學成分分類
可分為碳素鋼、低合金鋼和合金鋼。
按主要質量等級分類
① 普通碳素鋼、優質碳素鋼和特殊質量碳素鋼;
② 普通低合金鋼、優質低合金鋼和特殊質量低合金鋼;
③ 普通合金鋼、優質合金鋼和特殊質量合金鋼。
表示方法
按照國家標準《鋼鐵產品牌號表示方法》規定,我國鋼鐵產品牌號採用漢語拼音字母、化學符號和阿拉伯數字相結合的表示方法,即:
l )牌號中化學元素採用國際化學元素表示。
2 )產品名稱、用途、特性和工藝方法等,通常採用代表該產品漢字的漢語拼音的縮寫字母表示。
3 )鋼鐵產品中的主要化學元素含量(%)採用阿拉伯數字表示。
合金結構鋼的牌號按下列規則編制。數字表示含碳量的平均值。合金結構鋼和彈簧鋼用二位數宇表示平均含碳量的萬分之幾,不銹耐酸鋼和耐熱鋼含碳量用千分數表示。平均含碳量<0.1 %(用 “0” 表示;平均含碳量1.00 %時,不標合碳量,否則用千分數表示。高速工具鋼和滾珠軸承鋼不標含碳量,滾珠軸承鋼標註用途符號 “C” 。平均合金含量<1.5 %者,在牌號中只標出元素符號,不注其含量。
進口金屬材料
中國規定的需要檢驗的進出口金屬材料類商品主要有生鐵、鋼錠、鋼坯、型材、線材、金屬製品、有色金屬及其製品等。進出口鋼材的品質、規格一般在契約中訂明,進口鋼材中採用日本Xiff’標 準JlsG系列和德國工業標準DIN系列的較氨出口鋼材一般按中國標準檢驗;關 於進口鍍鋅鐵皮、馬口鐵、矽鋼片的外觀缺陷的檢驗按國家商檢局的有關規定執行。國外的發票、裝箱清單、品質證書、重理明細單、殘損證明、商務 記錄是有關重量、質量、數量、殘損等檢驗鑑定的重要依據。金屬材料類商品一般是由國家商檢局或由其他商檢機構實施檢驗。對於大批 量的進口金屬材料,可在出廠前在國外製造廠進行檢驗;對於進口金屬材料 批量很大的專業單位,其本身檢驗設備齊全,技術力量較強的,經商檢機構 審核同意後,允許對其所進口的鋼材在向商檢機構申報後進行質量的初驗; 出口金屬材料時,必須進行出廠檢驗,商檢機構在生產過程中或出廠前還進 行不定期的抽查檢驗,並以衡器抽驗重量,核對批次、嘜頭、標記等。金屬材料以數量計價的做數量檢驗,接重量計價的則做重量檢驗。鋼材的尺 寸規格檢驗,包括鋼板的厚、寬、長;圓鋼的直徑:角鋼的邊長;槽鋼的高 度和槽寬;鋼管的直徑和壁厚等。鍍鋅鐵皮、馬口鐵的表面不得有傷痕、凹 坑、皺紋、露鐵等。金屬材料的機械及工藝性能檢驗,包括合金鋼熱處理後 的機械性能檢驗;鍋爐管和石油管的水壓試驗、擴口試驗等。金屬材料的化 學鹹分分析試驗,根據不同的用途,按標準規定以化學分析和儀器分析的方法,分析測定各種元素的含量,包括非金屬元素和有害元素。
快速成型技術
原理
快速成型屬於離散/堆積成型。它從成型原理上提出一個全新的思維模式維模型,即將計算機上製作的零件三維模型,進行格線化處理並存儲,對其進行分層處理,得到各層截面的二維輪廓信息,按照這些輪廓信息自動生成加工路徑,由成型頭在控制系統的控制下,選擇性地固化或切割一層層的成型材料,形成各個截面輪廓薄片,並逐步順序疊加成三維坯件.然後進行坯件的後處理,形成零件。
工藝過程
快速成型的工藝過程具體如下:
l)產品三維模型的構建。由於 RP 系統是由三維 CAD 模型直接驅動,因此首先要構建所加工工件的三維CAD 模型。該三維CAD模型可以利用計算機輔助設計軟體(如Pro/E,I-DEAS,Solid Works,UG 等)直接構建,也可以將已有產品的二維圖樣進行轉換而形成三維模型,或對產品實體進行雷射掃描、 CT 斷層掃描,得到點雲數據,然後利用反求工程的方法來構造三維模型。
2)三維模型的近似處理。由於產品往往有一些不規則的自由曲面,加工前要對模型進行近似處理,以方便後續的數據處理工作。由於STL格式檔案格式簡單、實用,目前已經成為快速成型領域的準標準接口檔案。它是用一系列的小三角形平面來逼近原來的模型,每個小三角形用 3 個頂點坐標和一個法向量來描述,三角形的大小可以根據精度要求進行選擇。STL 檔案有二進制碼和 ASCll 碼兩種輸出形式,二進制碼輸出形式所占的空間比 ASCⅡ 碼輸出形式的檔案所占用的空間小得多,但ASCⅡ碼輸出形式可以閱讀和檢查。典型的CAD 軟體都帶有轉換和輸出 STL 格式檔案的功能。
3)三維模型的切片處理。根據被加工模型的特徵選擇合適的加工方向,在成型高度方向上用一系列一定間隔的平面切割近似後的模型,以便提取截面的輪廓信息。間隔一般取0.05mm~0.5mm, 常用 0.1mm。間隔越小,成型精度越高,但成型時間也越長,效率就越低,反之則精度低,但效率高。
4)成型加工。根據切片處理的截面輪廓,在計算機控制下,相應的成型頭(雷射頭或噴頭)按各截面輪廓信息做掃描運動,在工作檯上一層一層地堆積材料,然後將各層相粘結,最終得到原型產品。
5)成型零件的後處理。從成型系統里取出成型件,進行打磨、拋光、塗掛,或放在高溫爐中進行後燒結,進一步提高其強度。
技術特點
快速成型特術具有以下幾個重要特徵:
l)可以製造任意複雜的三維幾何實體。由於採用離散/堆積成型的原理.它將一個十分複雜的三維製造過程簡化為二維過程的疊加,可實現對任意複雜形狀零件的加工。越是複雜的零件越能顯示出 RP 技術的優越性此外, RP 技術特別適合於複雜型腔、複雜型面等傳統方法難以製造甚至無法製造的零件。
2)快速性。通過對一個 CAD 模型的修改或重組就可獲得一個新零件的設計和加工信息。從幾個小時到幾十個小時就可製造出零件,具有快速製造的突出特點。
3)高度柔性。無需任何專用夾具或工具即可完成複雜的製造過程,快速製造工模具、原型或零件
4)快速成型技術實現了機械工程學科多年來追求的兩大先進目標.即材料的提取(氣、液固相)過程與製造過程一體化和設計(CAD)與製造(CAM)一體化
5)與反求工程(Reverse Engineering)、CAD 技術、網路技術、虛擬現實等相結合,成為產品決速開發的有力工具。
因此,快速成型技術在製造領域中起著越來越重要的作用,並將對製造業產生重要影響。
分類
快速成型技術的分類:
快速成型技術根據成型方法可分為兩類:基於雷射及其他光源的成型技術(Laser Technology),例如:光固化成型(SLA)、分層實體製造(LOM)、選域雷射粉末燒結(SLS)、形狀沉積成型(SDM)等;基於噴射的成型技術(Jetting Technoloy),例如:熔融沉積成型(FDM)、三維印刷(3DP)、多相噴射沉積(MJD)。下面對其中比較成熟的工藝作簡單的介紹。
1、SLA(Stereolithogrphy Apparatus)工藝 SLA 工藝也稱光造型或立體光刻,由Charles Hul 於 1984 年獲美國專利。1988 年美國 3D System公司推出商品化樣機SLA-I,這是世界上第一台快速成型機。SLA 各型成型機機占據著 RP 設備市場的較大份額。SLA 技術是基於液態光敏樹脂的光聚合原理工作的。這種液態材料在一定波長和強度的紫外光照射下能迅速發生光聚合反應,分子量急劇增大,材料也就從液態轉變成固態。SLA工作原理:液槽中盛滿液態光固化樹脂雷射束在偏轉鏡作用下,能在液態表而上掃描,掃描的軌跡及光線的有無均由計算機控制,光點打到的地方,液體就固化。成型開始時,工作平台在液面下一個確定的深度.聚焦後的光斑在液面上按計算機的指令逐點掃描,即逐點固化。當一層掃描完成後.未被照射的地方仍是液態樹脂。然後升降台帶動平台下降一層高度,已成型的層面上又布滿一層樹脂,刮板將粘度較大的樹脂液面刮平,然後再進行下一層的掃描,新周化的一層牢周地粘在前一層上,如此重複直到整個零件製造完畢,得到一個三維實體模型。SLA 方法是目前快速成型技術領域中研究得最多的方法.也是技術上最為成熟的方法。SLA 工藝成型的零件精度較高,加工精度一般可達到 0.1 mm ,原材料利用率近 100 %。但這種方法也有白身的局限性,比如需要支撐、樹脂收縮導致精度下降、光固化樹脂有一定的毒性等。
2、LOM(Laminated Object Manufacturing,LOM)工藝LOM工藝稱疊層實體製造或分層實體製造,由美國Helisys公司的Michael Feygin於 1986 年研製成功。LOM工藝採用薄片材料,如紙、塑膠薄膜等。片材表面事先塗覆上一層熱熔膠。加工時,熱壓輥熱壓片材,使之與下面已成型的工件粘接。用CO2雷射器在剛粘接的新層上切割出零件截面輪廓和工件外框,並在截面輪廓與外框之間多餘的區域內切割出上下對齊的格線。雷射切割完成後,工作檯帶動已成型的工件下降,與帶狀片材分離。供料機構轉動收料軸和供料軸,帶動料帶移動,使新層移到加工區域。工作合上升到加工平面,熱壓輥熱壓,工件的層數增加一層,高度增加一個料厚。再在新層上切割截面輪廓。如此反覆直至零件的所有截面粘接、切割完。最後,去除切碎的多餘部分,得到分層製造的實體零件。LOM 工藝只需在片材上切割出零件截面的輪廓,而不用掃描整個截面。因此成型厚壁零件的速度較快,易於製造大型零件。工藝過程中不存在材料相變,因此不易引起翹曲變形。工件外框與截面輪廓之間的多餘材料在加工中起到了支撐作用,所以 LOM 工藝無需加支撐。缺點是材料浪費嚴重,表面質量差。
3、SLS(Selective Laser Sintering)工藝 SLS工藝稱為選域雷射燒結,由美國德克薩斯大學奧斯汀分校的C.R.Dechard於 1989 年研製成功。SLS工藝是利用粉末狀材料成型的。將材料粉末鋪灑在已成型零件的上表面,並刮平,用高強度的CO2雷射器在剛鋪的新層上掃描出零件截面,材料粉末在高強度的雷射照射下被燒結在一起,得到零件的截面,並與下面已成型的部分連線。當一層截面燒結完後,鋪上新的一層材料粉末,有選擇地燒結下層截面。燒結完成後去掉多餘的粉末,再進行打磨、烘乾等處理得到零件。SLS工藝的特點是材料適應面廣,不僅能製造塑膠零件,還能製造陶瓷、蠟等材料的零件,特別是可以製造金屬零件。這使SLS工藝頗具吸引力。SLS工藝無需加支撐,因為沒有燒結的粉末起到了支撐的作用。
4、3DP (Three Dimension Printing)工藝三維印刷工藝是美國麻省理工學院E-manual Sachs等人研製的。已被美國的Soligen公司以DSPC(Direct Shell Production Casting)名義商品化,用以製造鑄造用的陶瓷殼體和型芯。3DP 工藝與SLS工藝類似,採用粉末材料成型,如陶瓷粉末、金屬粉末。所不同的是材料粉末不是通過燒結連結起來的,而是通過噴頭用粘結劑(如矽膠)將零件的截面“印刷”在材料粉來上面。用粘結劑粘接的零件強度較低,還須後處理。先燒掉粘結劑,然後在高溫下滲人金屬,使零件緻密化,提高強度。
5 . FDM (Fused Depostion Modeling)工藝 熔融沉積製造(FDM)工藝由美國學者Scott Crump於 1988 年研製成功。FDM 的材料一般是熱塑性材料,如蠟、 ABS 、尼龍等。以絲狀供料。材料在噴頭內被加熱熔化。噴頭沿零件截面輪廓和填充軌跡運動,同時將熔化的材料擠出,材料迅速凝固,並與周圍的材料凝結。FDM技術是由Stratasys公司所設計與製造,可套用於一系列的系統中。這些系統為FDM Maxum,FDM Titan,Prodigy Plus以及Dimension。FDM技術利用ABS,polycarbonate(PC),polyphenylsulfone (PPSF)以及其它材料。這些熱塑性材料受到擠壓成為半熔融狀態的細絲,由沉積在層層堆疊基礎上的方式,從3D CAD資料直接建構原型。該技術通常套用於塑型,裝配,功能性測試以及概念設計。此外,FDM技術可以套用於打樣與快速製造。
其它材料: FDM技術還有其它的專用材料。這些包含polyphenylsulfone、橡膠材質以及蠟材。橡膠材質是用來作類似橡膠特性的功能性原型。蠟材是特別設計來建立脫蠟鑄造的樣品。蠟材的屬性讓FDM的樣品可以用來生產類似鑄造廠中的傳統蠟模。Polyphenylsulfone,一種套用於Titan機型的新工程材料,提供高耐熱性與抗化學性以及強度與硬度,其耐熱度為攝氏207.2度。
Stratasys宣布已經針對FDM快速原型系統Titan發表PPSF材料。在各種快速原型材料之中,PPSF (或是稱為 polyphenylsulfone)有著最高的強韌性、耐熱性、以及抗化學性。航天工業、汽車工業以及醫療產品業的生產製造商是第一批期待使用這種PPSF材料的用戶。航天業將會喜歡該材料的難燃屬性;汽車製造業也非常想套用其抗化學性以及在400度以上還能持續運作的能力;而醫療產品製造商將對PPSF材質的原型可以進行消毒的能力感到興趣。測試單位,Parker Hannifin安裝了一個PPSF作的模型到汽車引擎中。該零件是一個名為crankcase vapor coalescer的過濾器,裝在一組V8引擎並作40 小時的測試以決定過濾器媒介的效能。該零件收集的燃氣包含有160度的潤滑油,燃料,油煙,以及其它燃燒的化學反應生成物。Parker Hannifin的Russ Jensen說,“該裝配件並沒有產生外漏,並且其展現出與第一次裝配時相同的強度與屬性。我們相當滿意它的表現。” 測試單位,MSOE (Milwaukee School of Engineering)的操作經理Sheku Kamara,同樣地很滿意該新材料。“當在玻璃熔融的450度時,在各種快速原型材料之中,PPSF材料還擁有著除了金屬之外最高的操作溫度以及堅硬度,”他說。“在粘著劑測試期間,PPSF原型零件遭受於溫度從14度到392度的考驗且依然保持完整。”
顏色包含最常用到的白色,ABS提供六種材料顏色。色彩的選項包含藍色,黃色,紅色,綠色與黑色。醫學等級的ABSi 提供針對於半透明的套用,例如汽車車燈的透明紅色或是黃色。
屬性穩定度不像SLA以及PolyJet的樹脂,FDM材料的材料屬性不會隨著時間與環境曝曬而改變。就像是注塑成型的副本,這些材料幾乎在任何環境下都會保持他們的強度,硬度以及色彩。
精準性快速原型的尺寸精度取決於許多因素,而其結果可能會因為每個工件或是不同日期而有些微小變化。需要考慮的事情必須包含已知的條件,例如量測的時間範圍,工件的拚?約盎肪車鈉厴埂?axum,Titan以及Prodigy Plus精準度資料詳見附表一。精度測試工件如圖5、6所示,在每一台機器中均用層厚0.18 mm所建構以形成目前的精準性資料。
MAXUM TITAN PRODIGY
理論尺寸 實際尺寸 百分比 理論尺寸 百分比 理論尺寸 百分比
A 76.2 76.2 0.00 76.2 0.00 76.1 0.17
B 25.4 25.5 0.30 25.5 0.40 25.6 0.60
C 152.4 152.4 0.00 152.3 0.08 152.4 0.00
D 2.54 2.51 1.00 2.54 0.00 2.54 0.00
E 76.2 76.15 0.07 76.07 0.17 76.12 0.10
F 101.6 101.57 0.02 101.42 0.18 101.50 0.10
G 25.4 25.48 0.30 25.50 0.40 25.55 0.60
H1 12.7 12.62 0.60 12.65 0.40 12.55 1.20H2 12.7 12.62 0.60 12.67 0.20 12.55 1.20
I 12.7 12.67 0.20 12.7 0.00 12.62 0.60
J 6.35 6.43 1.20 6.55 3.05 6.48 2.00
K 12.7 12.67 0.20 12.78 0.60 12.78 0.60
Maxum、Titan以及Prodigy Plus的尺寸精度資料。所有的測試零件均用層厚0.18mm所建構。(單位:mm)
工件建構一般而言,FDM技術所提供的準確性通常相等或是優於SLA技術以及PolyJet技術,且確定優於SLS技術。然而,由於精準性是取決於許多的因素,所以矛盾的結果便會發生在個別的原型上。FDM技術的精準性受到較少的變數影響。用SLA,SLS以及PolyJet技術,尺寸精準性會受影響的因素有機器的校正,操作的技巧,工件的成型方向與位置,材料的年限以及收縮率。
Z軸這並非一定都會這樣,Z軸可能是被證明準確性最小的。除了先前所討論的變化之外,原型的高度可能由於層厚整數誤差而改變。對所有的RP系統而言都是這樣的。任何特徵的表面頂端或是底端無法對齊成為一層時,在軟體中的切層算法會將尺寸整數化到最接近的層厚數。在最壞的情形下,一端的表面往下整數化而另一端向上,高度可能偏離一個層厚。對於典型的FDM參數,這可能會產生的誤差至少為0.127mm。
穩定性尺寸的穩定性是FDM原型的關鍵優勢,如同SLS技術,時間與環境的曝曬都不會改變工件的尺寸或其他的特徵。一但原型從FDM系統分離,當它達到室內溫度後,尺寸是固定不變的。如果溫度度數變化,用SLA 或是PolyJet技術則不是這樣的情形。
後處理輸出許多RP件都需要手工完成工件的光滑性。例如,SLA需要從工件表面手動移除支撐結構,且工件表面需要一些手工打磨。這表示工件的精準性不再只是受到系統精度的作用。它現在是受到後處理技師的技術等級所控制。對於塑型,裝配以及功能性原型,多數的使用者發現FDM工件的表面精度是可以接受的。那么,當結合了水溶性支撐以及易剝離支撐,表示FDM原型的精準性不會受到手工的改變。當然,如果需要翻矽膠模用或是噴漆用的表面精度,FDM工件將需要後處理,如同其它的技術一樣。既然這樣,工件後處理技師的技藝在可以做到的原型精度上扮演了一個關鍵的角色。
表面完工精度受到使用者與Stratasys公司雙方的公認,FDM技術最明顯的限制就是表面完工精度。由於是半熔融狀態塑膠擠製成型,表面完工精度比SLA與PolyJet還要粗糙,而與SLS不相上下。當由較小的線材寬度與較薄的層厚來改進表面完工精度時,仍然可以在頂端,底面,以及側牆看出經過擠壓噴嘴的等高線輪廓與建構層厚。表2所列的為Maxum與Titan的表面完工精度。為了改善表面完工精度,Maxum與Titan現在都提供0.127 mm層厚。使用者發現工件的成型方向,可以滿足考慮表面完工精度需求。這些要求較高完工精度的表面通常以垂直方向成型。較不重要的表面通常以水平方向成型,就像是底端或是頂端的表面。如同其它技術,二次加工(後處理輸出)可以用來使之相同。然而,ABS與polycarbonate材料的硬度讓打磨耗費人力。使用者通常使用溶劑或用是粘結劑完成或是預備用打磨。商業上可用的這些介質包含有熔接,ABS快乾膠,Acetone 以及two-part epoxies。要符合足夠的精度,FDM技術與競爭對手的產品都可以提供翻矽膠模用或是噴漆用的表面。這關鍵的差異是要花費多少時間才能達到要求的結果。
特徵定義:儘管高階的FDM系統可以生產較小的特徵,大多數FDM原型的最小特徵尺寸受限於兩倍線材寬度。沒有使用者的介入,FDM技術使用的”closed path”選項會限制最小特徵尺寸為兩倍擠壓成型噴組的寬度。對於一般噴嘴與建造參數而言,最小特徵尺寸範圍從0.4到 0.6 mm。儘管大於SLA與PolyJet的最小特徵尺寸,但是該範圍是與這些技術的可用最小特徵尺寸相同。儘管SLA技術可以建造小到0.08 (Viper si2機種)或0.25 mm (所有機種),以及PolyJet技術可以建造小到0.04mm,幾乎很少原型會用到這些極小值的優勢來作最小的細節。考慮到材料屬性,通常發現SLA技術與PolyJet技術的原型常用最小特徵尺寸為0.5mm。FDM技術的最小特徵尺寸相等於或是優於SLS技術的0.6到 0.8 mm。由於材料屬性相似於注塑成型的ABS或是polycarbonate,FDM技術可以給予功能性特徵尺寸在0.4到 0.6 mm範圍中。
環境抵抗力:FDM原型提供的材料性質相似於熱塑性材料。這包含了環境的與化學的曝曬。對ABS材料而言,使用者可以實驗他們的原型在93度的溫度下以及包含石油,汽油以及甚至某些酸類等的化學媒介。一關鍵的考慮為水氣的曝曬,包括浸沒與濕氣。SLA技術與PolyJet技術使用的光敏樹脂對於潮濕水氣敏感且會受到傷害。暴曬在水中或是濕氣中不只會影響原型的機械屬性,也會影響尺寸精度。當光敏樹脂的原型吸收了水氣之後,他們將會開始軟化並且變的有點易於彎曲。而且,工件會有翹曲或是膨脹的傾向,這會嚴重影響尺寸的精度。FDM技術的原型,以及SLS技術的原型,都不受濕氣影響,所以他們可以保持原有的機械屬性以及尺寸精度。
機械加工:FDM原型可以進行銑床加工,鑽孔,研磨,車床加工等。為了補償表面精度不足並加強特徵細節,當有特殊的品質需求時,使用者通常會進行二次加工來提升原型的細節。在考慮原型的物理屬性之後,注意力應該轉移至操作的參數上。下列領域可以影響到原型在預期套用上的使用。
工件尺寸:不像某些快速原型技術,廣告中FDM技術的建造範圍就是最大的工件尺寸。在家族系列產品中,FDM技術提供了廣泛的建造範圍。Maxum,最超大型,所提供的工件尺寸可達600 x 500 x 600 mm。這樣的建造範圍與最大型的SLA系統相同。Titan,則提供最大的工件尺寸為406 x 355 x 406 mm。這樣的建造範圍稍微大於SLS Sinterstations系統。Prodigy Plus,辦公室桌上型,擁有的建造範圍為203 x 203 x 305 mm,該尺寸稍微大於PolyJet系統以及最小型的SLA系統。當使用具競爭性的技術時,快速原型超過建造範圍的部分通常分段建構然後作粘結。使用商業上可用ABS快乾膠,FDM工件的粘和強度可以滿足功能性測試的套用。此外,FDM工件可以使用超音波熔接,這種選項無法使用在SLA以及PolyJet,因為他們不是使用熱塑性材料。
支撐結構:在FDM技術中,需要支撐結構來形成基底以製作工件並支撐任何超過懸掛的特徵。在工件的接口,支撐材料的堅固堆層已經放下。在這堅固堆層下,線材為0.5mm且在間隔為3.8mm下沉積。FDM技術提供兩種類型的支撐--易於剝離支撐結構(BASS)以及水溶性支撐結構(WaterWorks)。BASS支撐是由手工將支撐從工件表面剝離以移除。當他們不想損壞工件表面,考慮的是必須要容易進入與接近細小特徵。水溶性支撐(WaterWorks)是使用水溶性材料,可分解於鹼性水溶劑的解決方案。不像是易於剝離支撐(BASS),該支撐可以任意坐落於工件深處地嵌壁式的區域,或是接觸於細小特徵,因為機械式的移除方式是可以不加考慮的。此外,水溶性支撐可以保護細小特徵。在其它的快速原型技術中,他們要如何移除支撐而不造成特徵損壞,是一項極大挑戰。
一體成型的裝配件隨著水溶性支撐的出現,FDM技術提供了一項獨特的解決方案--建構可運轉的一體成型裝配件。因為水溶性支撐可以進行分解,一個多件的裝配件可以在一次機械運轉中建構完成。當多件的裝配件可以在SLS或是PolyJet中實行時,要小心地考慮到殘留在原件之間的材料。舉例來說,如圖3所示的FDM技術的腦型齒輪組,可以不用手工勞動就能完成並用一些時間就能將水溶性支撐進行分解。用SLS技術製作這樣相同的工件,可能需要一個小時以上的手工勞動來清除齒輪與軸柄之件的粉末。有了水溶性支撐,整個裝配件的CAD資料可以當作一個工件處理。同樣地,也不需要手工勞動或是時間進行工件的裝配。
快速成型設備最好能放置於電腦設計室內以便於工作,要求設備無煙塵、無震動和噪音並且材料安全無毒。而光敏樹脂(SLA)液態原材料有毒,需特別小心處理,並且需配置抽風系統,以抽除建模過程中產生之毒煙;而粉末材料(SLS)需配備抽風系統、吸塵設備、防塵箱及氮氣發生系統;紙張(LOM)也需要配置抽風系統以抽除建模過程中產生之煙霧;只有美國Stratasys公司的FDM快速成型機只需要在一般辦公室環境下操作。許多FDM技術的使用者把該技術當作設計的周邊。就本身而言,為了在製程早期就能審核與確認設計概念,該技術已經變得另一種與CAD系統連結並驅動的工具。由於這樣的套用,FDM技術都是作為概念模型工具以清楚地傳達日益精緻與複雜的設計。當FDM技術無法從概念模型中提供預期的速度,它提供了結合概念模型與視覺套用的優勢。這些強處包含精準性,材料屬性,色彩以及免用手動工件後處理。儘管材料強度與硬度並非概念模型的關鍵,但是它通常值得關注,因為脆弱的模型通常在最不適當的時機破裂。FDM技術的模型也套用於銷售與行銷,包含內部與外部。對內,FDM技術的原型是用來給銷售團隊,管理階層以及其它員工在開始製造之前看一眼產品長相。對外,原型是用來在產品作商品化之前引起預期客戶的興奮與興趣。
塑型,裝配以及功能性模型:對許多技術而言,快速原型的套用在塑型,裝配以及功能性分析方面時需要作某些方面的犧牲。儘管SLA技術與PolyJet技術提供較好的細節,精準度與表面加工精度,但是他們無法提供必要的強度與硬度。同樣地,SLS技術提供強度而犧牲精準性與細節。
修整樣品:快速原型可以用來作為建立模具的樣品。不像其它快速原型技術,FDM技術可以成功地用來製作樣品。然而,必須考慮表面加工精度與工件後處理到可以作為母模所需時間。脫蠟鑄造是樣品的額外用途,樣品必須能在他們自己所建立陶砂殼模之中燃燒消耗掉。FDM技術製程所建構的蠟模與ABS模都被證實適合套用在陶砂殼模之中燃燒消耗的標準鑄造流程。
快速製造(少量多樣)快速原型激起對於短期製造的興趣,對於少到只有一個單位的訂單都很合算。這樣的套用需要工件在許多領域都符合功能性規格。在FDM技術的精準性與材料屬性都是可用之際,它是少數致力於該套用的技術之一。當尚未經過最後加工修飾的FDM工件可能受限使用於可視化,裝飾的套用,但不受妨礙它去作為內部組件,或是那些不需要藝術吸引力的用途。對於快速製造的套用,運行時間將會成為一項重要的考慮。然而,就像幾位使用者的證明,為數不多的工件運行時間是明顯地少於生產模具與成品所需要的總時間。
發展前景
金屬製品行業包括結構性金屬製品製造、金屬工具製造、貨櫃及金屬包裝容器製造、不鏽鋼及類似日用金屬製品製造,船舶及海洋工程製造等。隨著社會的進步和科技的發展,金屬製品在工業、農業以及人們的生活各個領域的運用越來越廣泛,也給社會創造越來越大的價值。
金屬製品行業在發展過程中也遇到一些困難,例如技術單一,技術水平偏低,缺乏先進的設備,人才短缺等,制約了金屬製品行業的發展。為此,可以採取提高企業技術水平,引進先進技術設備,培養適用人才等提高中國金屬製品業的發展。
2009年金屬製品行業的產品將越來越趨向於多元化,業界的技術水平越來越高,產品質量會穩步提高,競爭與市場將進一步合理化。加上國家對行業的進一步規範,以及相關行業優惠政策的實施,2009-2012年,金屬製品行業將有巨大的發展空間。