電路與模擬電子技術-第二版

電路與模擬電子技術-第二版

《電路與模擬電子技術-第二版》是2009年高等教育出版社出版的圖書,作者是殷瑞祥。本書主要介紹了電路理論基礎、模擬電子技術基礎和電路與模擬電子技術實驗。

內容簡介

《電路與模擬電子技術(第2版)》為普通高等教育“十一五”國家級規劃教材。電路與模擬電子技術是計算機類專業的一門理論性、實踐性都比較強的技術基礎課程書中著重基本概念、基本原理和基本電路的分析與套用。例題和習題除圍繞上述重點外,還注意思考性、啟發性,使讀者能增強分析問題和解決問題的能力。實驗內容,提供了16項電路與模擬電子技術實驗。

圖書目錄

上篇 電路理論基礎

第1章 電路的基本概念與基本定律

1.1 電路組成與功能

電流流過的迴路叫做電路,又稱導電迴路。最簡單的電路,是由電源、負載、導線、開關等元器件組成。電路導通叫做通路。只有通路,電路中才有電流通過。電路某一處斷開叫做斷路或者開路。如果電路中電源正負極間沒有負載而是直接接通叫做短路,這種情況是決不允許的。另有一種短路是指某個元件的兩端直接接通,此時電流從直接接通處流經而不會經過該元件,這種情況叫做該元件短路。開路(或斷路)是允許的,而第一種短路決不允許,因為電源的短路會導致電源、用電器、電流表被燒壞。

電路(英語:Electrical circuit)或稱電子迴路,是由電器設備和 元器件, 按一定方式連線起來,為電荷流通提供了路徑的總體,也叫電子線路或稱電氣迴路,簡稱網路或迴路。如電源、電阻、電容、電感、二極體、三極體、電晶體、IC和電鍵等,構成的網路、硬體。負電荷可以在其中流動。

1.2 電路模型

電路模型是實際電路抽象而成,它近似地反映實際電路的電氣特性。電路模型由一些理想電路元件用理想導線連線而成。用不同特性的電路元件按照不同的方式連線就構成不同特性的電路。

電路模型近似地描述實際電路的電氣特性。根據實際電路的不同工作條件以及對模型精確度的不同要求,應當用不同的電路模型模擬同一實際電路。

這種抽象的電路模型中的元件均為理想元件。

1.3電路中的基本物理量:電壓、電流、電位、功率

1.3.1 電流

電流,是指電荷的定向移動。電源的電動勢形成了電壓,繼而產生了電場力,在電場力的作用下,處於電場內的電荷發生定向移動,形成了電流。電流的大小稱為電流強度(簡稱電流,符號為I),是指單位時間內通過導線某一截面的電荷量,每秒通過1庫侖的電量稱為1「安培」(A)。安培是國際單位制中所有電性的基本單位。 除了A,常用的單位有毫安(mA)、微安(μA) 。1A=1000mA=1000000μA電學上規定:正電荷流動的方向為電流方向。電流微觀表達式I=nesv,n為單位時間內通過導體橫截面的電荷數,e為電子的電荷量,s為導體橫截面積,v為電荷速度。

1.3.2 電壓、電位和電動勢

電壓,也稱作電勢差或電位差,是衡量單位電荷在靜電場中由於電勢不同所產生的能量差的物理量。其大小等於單位 正電荷因受電場力作用從A點移動到B點所作的功,電壓的方向規定為從高電位指向低電位的方向。電壓的國際單位制為伏特(V),常用的單位還有毫伏(mV)、微伏(μV)、千伏(kV)等。此概念與水位高低所造成的“水壓”相似。需要指出的是,“電壓”一詞一般只用於電路當中,“電勢差”和“電位差”則普遍套用於一切電現象當中。

在電場中,某點電荷的電勢能跟它所帶的電荷量之比,叫做這點的電勢(也可稱電位)。電勢是從能量角度上描述電場的物理量。(電場強度則是從力的角度描述電場)

1.3.3 功率和能量

功率是指物體在單位時間內所做的功,即功率是描述做功快慢的物理量。功的數量一定,時間越短,功率值就越大。求功率的公式為功率=功/時間

功率可分為電功率,力的功率等。故計算公式也有所不同。

電功率計算公式:P=W/t =UI ;在純電阻電路中,根據歐姆定律U=IR代入P=UI中還可以得到:P=I*IR=(U*U)/R

在動力學中: 功率計算公式:P=W/t(平均功率);P=Fvcosa(瞬時功率)

因為 W=F( f 力)×S(s位移)(功的定義式),所以求功率的公式也可推導出 P=F·v(當 v表示平均速度時求出的功率為相應過程的平均功率,當 v表示瞬時速度時求出的功率為相應狀態的瞬時功率)。

P表示功率,單位是“瓦特”,簡稱“瓦”,符號是“W”。W表示功,單位是“焦耳”,簡稱“焦”,符號是“J”。“t”表示時間,單位是“秒”,符號是“s”。

功率越大轉速越高,汽車的最高速度也越高,常用最大功率來描述汽車的動力性能。最大功率一般用馬力(PS)或千瓦(kW)來表示,1馬力等於0.735千瓦。1 W=1 J/s

1.4 基本電路元件模型

1.4.1 電阻元件

電阻(Resistance,通常用“R”表示),在物理學中表示導體對電流阻礙作用的大小。導體的電阻越大,表示導體對電流的阻礙作用越大。不同的導體,電阻一般不同,電阻是導體本身的一種特性。電阻將會導致電子流通量的變化,電阻越小,電子流通量越大,反之亦然

1.4.2 電容元件

電容(Capacitance)亦稱作“電容量”,是指在給定電位差下的電荷儲藏量,記為C,國際單位是法拉(F)。一般來說,電荷在電場中會受力而移動,當導體之間有了介質,則阻礙了電荷移動而使得電荷累積在導體上,造成電荷的累積儲存,儲存的電荷量則稱為電容。因電容是電子設備中大量使用的電子元件之一,所以廣泛套用於隔直、耦合、旁路、濾波、調諧迴路、能量轉換、控制電路等方面。

1.4.3 電感元件

電感(inductance of an ideal inductor)是閉合迴路的一種屬性。當線圈通過電流後,線上圈中形成磁場感應,感應磁場又會產生感應電流來抵制通過線圈中的電流。這種電流與線圈的相互作用關係稱為電的感抗,也就是電感,單位是“亨利(H)”。

1.4.4 有源電路元件

1.5 電路的工作狀態與元件額定值

1.5.1 電路的工作狀態

1.5.2 電氣設備的額定值

1.6 基爾霍夫定律

基爾霍夫定律Kirchhoff laws是電路中電壓和電流所遵循的基本規律,是分析和計算較為複雜電路的基礎,1845年由德國物理學家G.R.基爾霍夫(Gustav Robert Kirchhoff,1824~1887)提出。它既可以用於直流電路的分析,也可以用於交流電路的分析,還可以用於含有電子元件的非線性電路的分析。運用基爾霍夫定律進行電路分析時,僅與電路的連線方式有關,而與構成該電路的元器件具有什麼樣的性質無關。基爾霍夫定律包括電流定律(KCL)和電壓定律(KVL),前者套用於電路中的節點而後者套用於電路中的迴路。

相關詞條

熱門詞條

聯絡我們