步進機

步進機

步進電機是一種將電脈衝轉化為角位移的執行機構。通俗一點講:當步進驅動器接收到一個脈衝信號,它就驅動步進電機按設定的方向轉動一個固定的角度(及步進角)。

步進電機分類

永磁式步進一般為兩相,轉矩和體積較小,步進角一般為7.5度 或15度;

步進電機分三種:永磁式(PM) ,反應式(VR)和混合式(HB)

反應式步進一般為三相,可實現大轉矩輸出,步進角一般為1.5度,但噪聲和振動都很大。在歐美等已開發國家80年代已被淘汰;混合式步進是指混合了永磁式和反應式的優點。它又分為兩相和五相:兩相步進角一般為1.8度而五相步進角一般為 0.72度。這種步進電機的套用最為廣泛。步進電機是將電脈衝信號轉變為角位移或線位移的開環控制元件。在非超載的情況下,電機的轉速、停止的位置只取決於脈衝信號的頻率和脈衝數,而不受負載變化的影響,即給電機加一個脈衝信號,電機則轉過一個步距角。這一線性關係的存在,加上步進電機只有周期性的誤差而無累積誤差等特點。使得在速度、位置等控制領域用步進電機來控制變的非常的簡單。

雖然步進電機已被廣泛地套用,但步進電機並不能象普通的直流電機,交流電機在常規下使用。它必須由雙環形脈衝信號、功率驅動電路等組成控制系統方可使用。因此用好步進電機卻非易事,它涉及到機械、電機、電子及計算機等許多專業知識。

現如今,生產步進電機的廠家的確不少,但具有專業技術人員,能夠自行開發,研製的廠家卻非常少,大部分的廠家只一、二十人,連最基本的設備都沒有。僅僅處於一種盲目的仿製階段。這就給用戶在產品選型、使用中造成許多麻煩。鑒於上述情況,我們決定以廣泛的感應子式步進電機為例。敘述其基本工作原理。望能對廣大用戶在選型、使用、及整機改進時有所幫助。

電機工作原理

反應式步進電機原理

由於反應式步進電機工作原理比較簡單。下面先敘述三相反應式步進電機原理。

1、結構:

電機轉子均勻分布著很多小齒,定子齒有三個勵磁繞阻,其幾何軸線依次分別與轉子齒軸線錯開。

0、1/3て、2/3て,(相鄰兩轉子齒軸線間的距離為齒距以て表示),即A與齒1相對齊,B與齒2向右錯開1/3て,C與齒3向右錯開2/3て,A'與齒5相對齊,(A'就是A,齒5就是齒1)下面是定轉子的展開圖:

2、旋轉:

如A相通電,B,C相不通電時,由於磁場作用,齒1與A對齊,(轉子不受任何力以下均同)。

如B相通電,A,C相不通電時,齒2應與B對齊,此時轉子向右移過1/3て,此時齒3與C偏移為1/3て,齒4與A偏移(て-1/3て)=2/3て。

如C相通電,A,B相不通電,齒3應與C對齊,此時轉子又向右移過1/3て,此時齒4與A偏移為1/3て對齊。

如A相通電,B,C相不通電,齒4與A對齊,轉子又向右移過1/3て

這樣經過A、B、C、A分別通電狀態,齒4(即齒1前一齒)移到A相,電機轉子向右轉過一個齒距,如果不斷地按A,B,C,A……通電,電機就每步(每脈衝)1/3て,向右旋轉。如按A,C,B,A……通電,電機就反轉。

由此可見:電機的位置和速度由導電次數(脈衝數)和頻率成一一對應關係。而方向由導電順序決定。

不過,出於對力矩、平穩、噪音及減少角度等方面考慮。往往採用A-AB-B-BC-C-CA-A這種導電狀態,這樣將原來每步1/3て改變為1/6て。甚至於通過二相電流不同的組合,使其1/3て變為1/12て,1/24て,這就是電機細分驅動的基本理論依據。

不難推出:電機定子上有m相勵磁繞阻,其軸線分別與轉子齒軸線偏移1/m,2/m……(m-1)/m,1。並且導電按一定的相序電機就能正反轉被控制——這是步進電機旋轉的物理條件。只要符合這一條件我們理論上可以製造任何相的步進電機,出於成本等多方面考慮,市場上一般以二、三、四、五相為多。

3、力矩:

電機一旦通電,在定轉子間將產生磁場(磁通量Ф)當轉子與定子錯開一定角度產生力

F與(dФ/dθ)成正比

S

其磁通量Ф=Br*S

Br為磁密,S為導磁面積

F與L*D*Br成正比

L為鐵芯有效長度,D為轉子直徑

Br=N·I/R

N·I為勵磁繞阻安匝數(電流乘匝數)R為磁阻。

力矩=力*半徑

力矩與電機有效體積*安匝數*磁密 成正比(只考慮線性狀態)

因此,電機有效體積越大,勵磁安匝數越大,定轉子間氣隙越小,電機力矩越大,反之亦然。

感應子式步進電機

1、特點:

感應子式步進電機與傳統的反應式步進電機相比,結構上轉子加有永磁體,以提供軟磁材料的工作點,而定子激磁只需提供變化的磁場而不必提供磁材料工作點的耗能,因此該電機效率高,電流小,發熱低。因永磁體的存在,該電機具有較強的反電勢,其自身阻尼作用比較好,使其在運轉過程中比較平穩、噪音低、低頻振動小。

感應子式步進電機某種程度上可以看作是低速同步電機。一個四相電機可以作四相運行,也可以作二相運行。(必須採用雙極電壓驅動),而反應式電機則不能如此。例如:四相,八相運行(A-AB-B-BC-C-CD-D-DA-A)完全可以採用二相八拍運行方式.不難發現其條件為C=,D=.

一個二相電機的內部繞組與四相電機完全一致,小功率電機一般直接接為二相,而功率大一點的電機,為了方便使用,靈活改變電機的動態特點,往往將其外部接線為八根引線(四相),這樣使用時,既可以作四相電機使用,可以作二相電機繞組串聯或並聯使用。

2、分類

感應子式步進電機以相數可分為:二相電機、三相電機、四相電機、五相電機等。以機座號(電機外徑)可分為:42BYG(BYG為感應子式步進電機代號)、57BYG、86BYG、110BYG、(國際標準),而像70BYG、90BYG、130BYG等均為國內標準。

3、步進電機的靜態指標術語

相數:產生不同對極N、S磁場的激磁線圈對數。常用m表示。

拍數:完成一個磁場周期性變化所需脈衝數或導電狀態用n表示,或指電機轉過一個齒距角所需脈衝數,以四相電機為例,有四相四拍運行方式即AB-BC-CD-DA-AB,四相八拍運行方式即 A-AB-B-BC-C-CD-D-DA-A.

步距角:對應一個脈衝信號,電機轉子轉過的角位移用θ表示。θ=360度(轉子齒數J*運行拍數),以常規二、四相,轉子齒為50齒電機為例。四拍運行時步距角為θ=360度/(50*4)=1.8度(俗稱整步),八拍運行時步距角為θ=360度/(50*8)=0.9度(俗稱半步)。

定位轉矩:電機在不通電狀態下,電機轉子自身的鎖定力矩(由磁場齒形的諧波以及機械誤差造成的)

靜轉矩:電機在額定靜態電作用下,電機不作旋轉運動時,電機轉軸的鎖定力矩。此力矩是衡量電機體積(幾何尺寸)的標準,與驅動電壓及驅動電源等無關。

雖然靜轉矩與電磁激磁安匝數成正比,與定齒轉子間的氣隙有關,但過份採用減小氣隙,增加激磁安匝來提高靜力矩是不可取的,這樣會造成電機的發熱及機械噪音。

4、步進電機動態指標及術語:

1、步距角精度:

步進電機每轉過一個步距角的實際值與理論值的誤差。用百分比表示:誤差/步距角*100%。不同運行拍數其值不同,四拍運行時應在5%之內,八拍運行時應在15%以內。

2、失步:

電機運轉時運轉的步數,不等於理論上的步數。稱之為失步。

3、失調角:

轉子齒軸線偏移定子齒軸線的角度,電機運轉必存在失調角,由失調角產生的誤差,採用細分驅動是不能解決的。

4、最大空載起動頻率:

電機在某種驅動形式、電壓及額定電流下,在不加負載的情況下,能夠直接起動的最大頻率。

5、最大空載的運行頻率:

電機在某種驅動形式,電壓及額定電流下,電機不帶負載的最高轉速頻率。

6、運行矩頻特性:

電機在某種測試條件下測得運行中輸出力矩與頻率關係的曲線稱為運行矩頻特性,這是電機諸多動態曲線中最重要的,也是電機選擇的根本依據。如下圖所示:

其它特性還有慣頻特性、起動頻率特性等。

電機一旦選定,電機的靜力矩確定,而動態力矩卻不然,電機的動態力矩取決於電機運行時的平均電流(而非靜態電流),平均電流越大,電機輸出力矩越大,即電機的頻率特性越硬。

其中,曲線3電流最大、或電壓最高;曲線1電流最小、或電壓最低,曲線與負載的交點為負載的最大速度點。

要使平均電流大,儘可能提高驅動電壓,使採用小電感大電流的電機。

7、電機的共振點:

步進電機均有固定的共振區域,二、四相感應子式步進電機的共振區一般在180-250pps之間(步距角1.8度)或在400pps左右(步距角為0.9度),電機驅動電壓越高,電機電流越大,負載越輕,電機體積越小,則共振區向上偏移,反之亦然,為使電機輸出電矩大,不失步和整個系統的噪音降低,一般工作點均應偏移共振區較多。

8、電機正反轉控制:

當電機繞組通電時序為AB-BC-CD-DA或()時為正轉,通電時序為DA-CA-BC-AB或()時為反轉。

驅動控制系統組成

使用、控制步進電機必須由環形脈衝,功率放大等組成的控制系統,其方框圖如下:

1、脈衝信號的產生。

脈衝信號一般由單片機或CPU產生,一般脈衝信號的占空比為0.3-0.4左右,電機轉速越高,占空比則越大。

2、信號分配

我廠生產的感應子式步進電機以二、四相電機為主,二相電機工作方式有二相四拍和二相八拍二種,具體分配如下:二相四拍為,步距角為1.8度;二相八拍為,步距角為0.9度。四相電機工作方式也有二種,四相四拍為AB-BC-CD-DA-AB,步距角為1.8度;四相八拍為AB-B-BC-C-CD-D-AB,(步距角為0.9度)。

3、功率放大

功率放大是驅動系統最為重要的部分。步進電機在一定轉速下的轉矩取決於它的動態平均電流而非靜態電流(而樣本上的電流均為靜態電流)。平均電流越大電機力矩越大,要達到平均電流大這就需要驅動系統儘量克服電機的反電勢。因而不同的場合採取不同的的驅動方式,到目前為止,驅動方式一般有以下幾種:恆壓、恆壓串電阻、高低壓驅動、恆流、細分數等。

為儘量提高電機的動態性能,將信號分配、功率放大組成步進電機的驅動電源。我廠生產的SH系列二相恆流斬波驅動電源與單片機及電機接線圖如下:

說明

CP 接CPU脈衝信號(負信號,低電平有效)

OPTO 接CPU+5V

FREE 脫機,與CPU地線相接,驅動電源不工作

DIR 方向控制,與CPU地線相接,電機反轉

VCC 直流電源正端

GND 直流電源負端

A 接電機引出線紅線

接電機引出線綠線

B 接電機引出線黃線

接電機引出線藍線

步進電機一經定型,其性能取決於電機的驅動電源。步進電機轉速越高,力距越大則要求電機的電流越大,驅動電源的電壓越高。電壓對力矩影響如下:

4、細分驅動器

在步進電機步距角不能滿足使用的條件下,可採用細分驅動器來驅動步進電機,細分驅動器的原理是通過改變相鄰(A,B)電流的大小,以改變合成磁場的夾角來控制步進電機運轉的。

步進電機的選擇

步進電機有步距角(涉及到相數)、靜轉矩、及電流三大要素組成。一旦三大要素確定,步進電機的型號便確定下來了。

1、步距角的選擇

電機的步距角取決於負載精度的要求,將負載的最小解析度(當量)換算到電機軸上,每個當量電機應走多少角度(包括減速)。電機的步距角應等於或小於此角度。現有市場上步進電機的步距角一般有0.36度/0.72度(五相電機)、0.9度/1.8度(二、四相電機)、1.5度/3度 (三相電機)等。

2、靜力矩的選擇

步進電機的動態力矩一下子很難確定,我們往往先確定電機的靜力矩。靜力矩選擇的依據是電機工作的負載,而負載可分為慣性負載和摩擦負載二種。單一的慣性負載和單一的摩擦負載是不存在的。直接起動時(一般由低速)時二種負載均要考慮,加速起動時主要考慮慣性負載,恆速運行進只要考慮摩擦負載。一般情況下,靜力矩應為摩擦負載的2-3倍內好,靜力矩一旦選定,電機的機座及長度便能確定下來(幾何尺寸)

3、電流的選擇

靜力矩一樣的電機,由於電流參數不同,其運行特性差別很大,可依據矩頻特性曲線圖,判斷電機的電流(參考驅動電源、及驅動電壓)

綜上所述選擇電機一般應遵循以下步驟:

4、力矩與功率換算

步進電機一般在較大範圍內調速使用、其功率是變化的,一般只用力矩來衡量,力矩與功率換算如下:

P= Ω·M

Ω=2π·n/60

P=2πnM/60

其P為功率單位為瓦,Ω為每秒角速度,單位為弧度,n為每分鐘轉速,M為力矩單位為牛頓·米

P=2πfM/400(半步工作)

其中f為每秒脈衝數(簡稱PPS)

套用中的注意點

1、步進電機套用於低速場合---每分鐘轉速不超過1000轉,(0.9度時6666PPS),最好在1000-3000PPS(0.9度)間使用,可通過減速裝置使其在此間工作,此時電機工作效率高,噪音低。

2、步進電機最好不使用整步狀態,整步狀態時振動大。

3、由於歷史原因,只有標稱為12V電壓的電機使用12V外,其他電機的電壓值不是驅動電壓伏值 ,可根據驅動器選擇驅動電壓(建議:57BYG採用直流24V-36V,86BYG採用直流50V,110BYG採用高於直流80V),當然12伏的電壓除12V恆壓驅動外也可以採用其他驅動電源, 不過要考慮溫升。

4、轉動慣量大的負載應選擇大機座號電機。

5、電機在較高速或大慣量負載時,一般不在工作速度起動,而採用逐漸升頻提速,一電機不失步,二可以減少噪音同時可以提高停止的定位精度。

6、高精度時,應通過機械減速、提高電機速度,或採用高細分數的驅動器來解決,也可以採用5相電機,不過其整個系統的價格較貴,生產廠家少,其被淘汰的說法是外行話。

7、電機不應在振動區內工作,如若必須可通過改變電壓、電流或加一些阻尼的解決。

8、電機在600PPS(0.9度)以下工作,應採用小電流、大電感、低電壓來驅動。

9、應遵循先選電機後選驅動的原則。

步進機工作原理:

1.當A相繞組通電(用直流電壓激磁)時;形成A相定子磁極(AA方向磁場),產生反應力,吸引轉子轉過一定的角度,使轉子齒與A相定子磁極小齒對齊。

2.當A相繞組斷電,B相繞組通電時,形成B相定子磁極(BB方向磁場) ,產生反應力,吸引轉子順時針轉過3°,使轉子齒與B相定子磁極小齒對齊。

3.以次類推…………

若控制線路不停地按A-B-C-A…順序控制步進電機各相繞組的通斷電,步進電機的轉子便不停地順時針轉動;若通電順序改為A-C-B-A…,步進電機的轉子將逆時針轉動。這種通電方式稱為三相三拍通電方式;此時定子繞組的通電狀態每改變一次,轉子轉過3°。

若控制線路不停地按A-AB-B-BC-C-CA-A…順序控制步進電機各相繞組的通斷電,這種通電方式稱為三相六拍通電方式。當從A相通電轉為A和B同時通電時,轉子齒將同時受到A相繞組產生的磁場和B相繞組產生的磁場的共同吸引,轉子齒只好停在A 和B兩相磁極之間,轉子轉過1.5°。當由A和B兩相同時通電轉為B相通電時,轉子再沿順時針方向旋轉1.5°,使轉子齒與B相磁極對齊。……依此類推。在三相六拍通電時,定子繞組的通電狀態每改變一次,轉子轉過1.5°。與三相三拍通電方式相比,可使每次轉角縮小一半。

步進電機定子繞組的通電狀態每改變一次,它的轉子轉過的一個確定角度,稱為步進電機的步距角a 。步距角a的計算公式:

其中,m為定子繞組的相數 ,Z為轉子的齒數,K為通電方式係數 ;當m相m拍通電時,k=1;m相2m拍通電時,k=2

(二)、五相五定子、軸向分相、反應式步進電機工作原理介紹

步進電機的定子和轉子在軸向分為五段,每一段都形成獨立的一相定子鐵心、定子繞組和轉子;各段定子鐵心形如內齒輪,由矽鋼片疊成;各段定子上的在圓周方向均勻分布,彼此之間錯開1/5齒距;各段轉子形如外齒輪,也由矽鐵片疊成;各段轉子齒彼此不錯位。

若控制線路不停地按A-B-C-D-E-A-…順序控制步進電機各相繞組的通斷電,這種通電方式稱為五相五拍通電;若控制線路不停地按 AB-ABC-BC-BCD-CD-CDE-DE-DEA-EA- EAB-AB …順序控制步進電機各相繞組的通斷電,這種通電方式稱為五相十拍通電;步距角a的計算仍可採用上述計算公式。

小結:

1.步進電機受脈衝電流控制,轉子的角位移正比於輸入脈衝的數量,轉子的角速度正比於輸入脈衝的頻率,轉子的旋轉方向取決於定子繞組的通電順序。

2.若維持控制繞組的電流不變, 則步進電機就可停在某一位置不動。

3.步進電機有一定的步距誤差, 但沒有累計誤差。

相關詞條

熱門詞條

聯絡我們