標準部分映射

標準部分映射(standard part map)是有限超實數集到實數集的一個映射。設Fin(*R)是一切有限超實數集,則映射st:Fin(*R)→R,st(y)=x,若且唯若x≈y,稱為標準部分映射。

概念

標準部分映射(standard part map)是有限超實數集到實數集的一個映射。設Fin(*R)是一切有限超實數集,則映射st:Fin(*R)→R,st(y)=x,若且唯若x≈y,稱為標準部分映射。x稱為y的標準部分。這個概念可推廣到一般拓撲空間。設X是拓撲空間,*X是X的自然擴張,ns(*X)是*X中的一切近標準點集,則映射st:ns(*X)→X,st(y)=x,若且唯若x≈y,即y屬於x的單子,稱為標準部分映射。

映射

在數學裡,映射是個術語,指兩個元素的集之間元素相互“對應”的關係,為名詞。映射,或者射影,在數學及相關的領域經常等同於函式。 基於此,部分映射就相當於部分函式,而完全映射相當於完全函式。

兩個非空集合A與B間存在著對應關係f,而且對於A中的每一個元素x,B中總有有唯一的一個元素y與它對應,就這種對應為從A到B的映射,記作f:A→B。其中,b稱為元素a在映射f下的象,記作:b=f(a)。a稱為b關於映射f的原象。集合A中所有元素的象的集合稱為映射f的值域,記作f(A)。

或者說,設A,B是兩個非空的集合,如果按某一個確定的對應關係f,使對於集合A中的任意一個元素x,在集合B中都有唯一的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。

映射,或者射影,在數學及相關的領域還用於定義函式。函式是從非空數集到非空數集的映射,而且只能是一對一映射或多對一映射。

映射在不同的領域有很多的名稱,它們的本質是相同的。如函式,運算元等等。這裡要說明,函式是兩個數集之間的映射,其他的映射並非函式。一一映射(雙射)是映射中特殊的一種,即兩集合元素間的唯一對應,通俗來講就是一個對一個(一對一)。

注意:(1)對於A中不同的元素,在B中不一定有不同的象;(2)B中每個元素都有原象(即滿射),且集合A中不同的元素在集合B中都有不同的象(即單射),則稱映射f建立了集合A和集合B之間的一個一一對應關係,也稱f是A到B上的一一映射。

拓撲空間

歐幾里得空間的一種推廣。給定任意一個集,在它的每一個點賦予一種確定的鄰域結構便構成一個拓撲空間。拓撲空間是一種抽象空間,這種抽象空間最早由法國數學家弗雷歇於1906年開始研究。1913年他考慮用鄰域定義空間,1914年德國數學家豪斯多夫給出正式定義。豪斯多夫把拓撲空間定義為一個集合,並使用了“鄰域”概念,根據這一概念建立了抽象空間的完整理論,後人稱他建立的這種拓撲空間為豪斯多夫空間(即現在的T2拓撲空間)。同時期的匈牙利數學家裡斯還從導集出發定義了拓撲空間。20世紀20年代,原蘇聯莫斯科學派的數學家П.С.亞里山德羅夫與烏雷松等人對緊與列緊空間理論進行了系統研究,並在距離化問題上有重要貢獻。1930年該學派的吉洪諾夫證明了緊空間的積空間的緊性,他還引進了拓撲空間的無窮乘積(吉洪諾夫乘積)和完全正規空間(吉洪諾夫空間)的概念。

20世紀30年代後,法國數學家又在拓撲空間方面做出新貢獻。1937年布爾巴基學派的主要成員H.嘉當引入“濾子”、“超濾”等重要概念,使得“收斂”的更本質的屬性顯示出來。韋伊提出一致性結構的概念,推廣了距離空間,還於1940年出版了《拓撲群的積分及其套用》一書。1944年迪厄多內引進雙緊緻空間,提出仿緊空間是緊空間的一種推廣。1945年弗雷歇又提出抽象距的概念,他的學生們進行了完整的研究。布爾巴基學派的《一般拓撲學》亦對拓撲空間理論進行了補充和總結。

此外,美國數學家斯通研究了剖分空間的可度量性,1948年證明了度量空間是仿緊的等結果。捷克數學家切赫建立起緊緻空間的包絡理論,為一般拓撲學提供了有力工具。他的著作《拓撲空間論》於1960年出版。近幾十年來拓撲空間理論仍在繼續發展,不斷取得新的成果。

相關詞條

熱門詞條

聯絡我們